首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In our preliminary screening study on the anti-inflammatory activity, a new triterpene compound, aceranol acetate (1), was isolated along with five known compounds: β-amyrin acetate (2); glutinol acetate (3); friedelin (4); glutinol (5); (3β)-d-glucopyranoside-stigmast-5-en-3-yl (6), from the stems and leaves of Acer mandshuricum. The structure of the new triterpene was determined to be 5α,6α-epidioxy-5β,6β-epoxy-9,13-dimethyl-25,26-dinoroleanan-3β-ol acetate by spectroscopic studies. Compounds 26 were isolated from this plant for the first. Five triterpene compounds (15) showed significant cytotoxic activity with GI50 in the range of 11.1–17.9 μM, whereas steroid compound (6) exhibited moderate activity against four human cancer cell lines (HL-60, SK-OV-3, A549, and HT-29). Furthermore, the anti-inflammatory effects of compounds 16 in the non-cytotoxic concentrations (1–100 nM) were evaluated for the inhibitory activity of TNF-α secretion in the lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophage cell line. Among the compounds tested, compound 2 showed the strongest anti-inflammatory activity with the inhibition rate up to 38.40% at the concentration of 100 nM, whereas other five compounds (26) exhibited moderate activity.  相似文献   

2.
Seven eremophilane-type sesquiterpenes (1–7), six cycloartane derivatives (813) and α-amyrin acetate (14) were isolated from the leaves of the far-eastern plant Ligularia alticola Worosch. (Family Asteraceae). (4S,5R,8S,10R)-8-Ethoxyeremophil-7(11)-en-12(8)-olide (1), 8α,11-epidioxy-8β-methoxyeremophil-6-ene (2) and 29-norcycloartan-3α-ol (8) have not been previously reported. Fukinone α-epoxide (3) was isolated for the first time from a natural source. The structures of all the compounds were established by the extensive analysis of their 1D and 2D NMR spectra and HR ESI mass spectrometry. The absolute stereochemistry of 1 was determined by comparison of theoretical and experimental ECD spectra with the application of B3LYP-TDDFT and B3LYP-GIAO calculations as well as by NMR spectroscopy. Compound 1 showed cytotoxic action against human cancer HL-60, Raji, and THP-1 cell lines (IC50 12.6, 6.0 and 6.9 μM, respectively). Compounds 2 and 4 demonstrated significant cytotoxic activities against HL-60 (IC50 2.8 and 5.8 μM, respectively) and Raji cells (IC50 2.9 and 4.2 μM, respectively). Compound 6 was cytotoxic against Raji cells (IC50 4.6 μM). None of tested compounds were cytotoxic against RAW 264.7 cells. Compounds 1 and 4–7 significantly decreased intracellular ROS levels, induced by endotoxic LPS from Escherichia coli in RAW 264.7 murine macrophages.  相似文献   

3.
In searching for naturally occurring anti-inflammatory agents, three new abietane-type diterpenoids, named 16-hydroxylambertic acid (1), 7-oxo-18-hydroxyferruginol (2), and 5α,12-dihydroxy-6-oxa-abieta-8,11,13-trien-7-one (3), were isolated from the seeds of Podocarpus nagi, together with three known compounds. The structures of the new compounds were elucidated by extensive analysis of NMR and HR-ESIMS data. All the new compounds were tested for nitric oxide (NO) inhibitory activities on lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compound 1 significantly inhibited NO production with IC50 value of 5.38 ± 0.17 μM, and suppressed inducible NO synthase (iNOS) expression in a dose-dependent manner, which were mediated through inhibiting the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation.  相似文献   

4.
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (326) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (1021) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05 ± 1.17, 18.64 ± 1.83, and 17.23 ± 0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 36, 8, 18, 2023, and 2526 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1 ± 0.9 to 45.3 ± 1.6 μM and 14.4 ± 0.5 to 44.5 ± 1.2 μM, respectively.  相似文献   

5.
Anti-inflammatory assay-guided separation of extracts from the roots of Caesalpinia mimosoides Lamk. led to isolation of seven compounds: four diterpenes (14), a dimer (9), and two dibenzo[b,d]furans (10, 11) together with eleven known compounds. Their structures were elucidated by 1D- and 2D-NMR techniques as well as UV, IR, mass spectral data and comparison with literature values. The anti-inflammatory activities of all compounds were evaluated for inhibitory activities against lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 cell lines. Compounds 4, 6, 8, and 1214 were also tested for the inhibitory effect on LPS-induced tumor necrosis factor-alpha (TNF-α) release in RAW264.7 cells. The results indicated that 4 possessed potent inhibitory activity for both tests with IC50 values of 3.0 and 6.5 μM, respectively.  相似文献   

6.
One new megastigmane, (6S,7R,8R,9S)-6-oxaspiro-7,8-dihydroxymegastigman-4-en-3-one (1) (tubiflorone, 1), and ten known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora (Harvey) Hamet. Structures of these isolates were assigned based on spectroscopic analyses that included 1D and 2D NMR techniques, such as HMQC, HMBC, and NOESY. The anti-inflammatory activities of selected isolated compounds (16 and 911) were evaluated as inhibitory activities against lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 cell lines. Compounds 14, 6, 9, and 11 possessed nitric oxide inhibitory activity with IC50 values ranging from 15.1 ± 0.9 to 98.9 ± 1.3 μM.  相似文献   

7.
Two new protolimonoid compounds, namely, argentinin A (1) and B (2) along with five known triterpenoid compounds, dammar-24-en-3α-ol (3), 3-epi-cabraleahydroxy lactone (4), (E)-25-hydroperoxydammar-23-en-3β,20-diol (5), mixture of eichlerianic acid and shoreic acid (6a and 6b), and dammar-24-en-3α,20-diol (7), were isolated from the stem bark of Aglaia argentea. The structure of new compounds were elucidated by spectroscopic methods including one and two-dimensional NMR as well as high-resolution mass spectrometric analysis. All of the compounds were tested for their cytotoxic effects against P-388 murine leukemia cells in vitro. Among those isolated compounds, argentinin A (1) showed the strongest activity with an IC50 value of 1.27 μg/mL (3.05 μM).  相似文献   

8.
The first synthesis of (E)-4-(3-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (1), (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (2), and (E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)but-3-en-2-one (3) was realized as natural bromophenols. Derivatives with mono OMe of 2 and 3 were obtained from the reactions of their derivatives with di OMe with AlCl3. These novel 4-phenylbutenone derivatives were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 158.07–404.16 pM for hCA I, 107.63–237.40 pM for hCA II, 14.81–33.99 pM for AChE and 5.64–19.30 pM for BChE. The inhibitory effects of the synthesized novel 4-phenylbutenone derivatives were compared to acetazolamide as a clinical hCA I and II isoenzymes inhibitor and tacrine as a clinical AChE and BChE enzymes inhibitor.  相似文献   

9.
The diterpenoids (+)-ferruginol (1), ent-kaur-16-en-15-one (2), ent-8(14),15-sandaracopimaradiene-2α,18-diol (3), 8(14),15-sandaracopimaradiene-2α,18,19-triol (4), and (+)-sugiol (5) and the triterpenoids 3β-methoxycycloartan-24(241)-ene (6), 3β,23β-dimethoxycycloartan-24(241)-ene (7), 3β,23β-dimethoxy-5α-lanosta-24(241)-ene (8), and 23(S)-23-methoxy-24-methylenelanosta-8-en-3-one (9), isolated from Amentotaxus formosana, showed inhibitory effects on xanthine oxidase (XO). Of the compounds tested, compound 5 was a potent inhibitor of XO activity, with an IC50 value of 6.8 ± 0.4 μM, while displaying weak ABTS radical cation scavenging activity. Treatment of the bladder cancer cell line, NTUB1, with 3–10 μM of compound 5 and 10 μM cisplatin, and immortalized normal human urothelial cell line, SV-HUC1, with 0.3–1 μM and 10–50 μM of compound 5 and 10 μM cisplatin, respectively, resulted in increased viability of cells compared with cytotoxicity induced by cisplatin. Treatment of NTUB1 with 20 μM cisplatin and 10 or 30 μM of compound 5 resulted in decreased ROS production compared with ROS production induced by cisplatin. These results indicate that 10 or 30 μM of compound 5 in NTUB1 cells may mediate through the suppression of XO activity and reduction of reactive oxygen species (ROS) induced by compound 5 cotreated with 20 μM cisplatin and protection of subsequent cell death.  相似文献   

10.
Using various chromatographic separation techniques, ten flavonoid glycosides, including six new compounds namely barringosides A?F (16), were isolated from a methanol extract of the Barringtonia acutangula leaves. The structure elucidation was confirmed by spectroscopic analyses, including 1D and 2D NMR, and HR ESI MS. Their inhibitory effects on LPS-induced NO production in RAW264.7 cells were also evaluated. Among the isolated compounds, quercetin 3-O-β-d-(6-p-hydroxybenzoyl)galactopyranoside (9) showed significant effect with an IC50 of 20.00 ± 1.68 µM. This is the first report of these flavonoid glycosides from Barringtonia genus and their inhibition on LPS-induced NO production in RAW264.7 cells was reported here for the first time.  相似文献   

11.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

12.
In the present study, a series of steroidal tetrazole derivatives of androstane and pregnane have been prepared in which the tetrazole moiety was appended at C-3 and 17a-aza locations. 3-Tetrazolo-3,5-androstadien-17-one (6), 3-tetrazolo-19-nor-3,5-androstadien-17-one (10), 3-tetrazolo-3,5-pregnadien-20-one (14), 17a-substituted 3-tetrazolo-17a-aza-d-homo-3,5-androstadien-17-one (2631) and 3-(2-acetyltetrazolo)-17a-aza-d-homo-3,5-androstadien-17-one (32) were synthesized from dehydroepiandrosterone acetate (1) through multiple synthetic steps. Some of the synthesized compounds were evaluated for their in vitro 5α-reductase (5AR) inhibitory activity by measuring the conversion of [3H] androstenedione in human embryonic kidney (HEK) cells. In vivo 5α-reductase inhibitory activity also showed a significant reduction (p <0.05) in rat prostate weight. The most potent compound 14 showed 5AR-2 inhibition with IC50 being 15.6 nM as compared to clinically used drug finasteride (40 nM). There was also a significant inhibition of 5AR-1 with IC50 547 nM compared to finasteride (453 nM).  相似文献   

13.
14.
A series of heterocyclic derivatives including indoles, pyrazines along with oximes and esters were synthesized from lupeol and evaluated for anti-inflammatory activity through inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 and J774A.1 cells. All the synthesized molecules of lupeol were found to be more active in inhibiting NO production with an IC50 of 18.4–48.7 μM in both the cell lines when compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50 = 69.21 and 73.18 μM on RAW 264.7 and J774A.1 cells, respectively). The halogen substitution at phenyl ring of indole moiety leads to potent inhibition of NO production with half maximal concentration ranging from 18.4 to 41.7 μM. Furthermore, alkyl (11, 12) and p-bromo/iodo (15, 16) substituted compounds at a concentration of 20 μg/mL exhibited mild inhibition (29–42%) of LPS-induced tumor necrosis factor alpha (TNF-α) and weak inhibition (10–22%) towards interleukin 1-beta (IL-1β) production in both the cell lines. All the derivatives were found to be non-cytotoxic when tested at their IC50 (μM). These findings suggest that the derivatives of lupeol could be a lead to potent inhibitors of NO.  相似文献   

15.
Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM).  相似文献   

16.
《Phytomedicine》2014,21(7):946-953
The tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) inhibitory activities of Cajanus cajan (leaves) crude methanolic extract, its fractions and its phytochemical constituents were evaluated in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Phytochemical investigation of the active ethyl acetate (CCE) and n-butanol (CCB) fractions of C. cajan L. leaves yielded 14 compounds. It was observed that both pinostrobin (9) and cajanus lactone (4) were found to be most active in inhibiting TNF-α (IC50 < 22 μM) and IL-1β (IC50 < 40 μM) whereas compounds 2, 3, 58, 10 and 14 showed moderate and mild effects (IC50 = 35.50–81.22 μM for TNF-α and 38.23–89.10 μM for IL-1β) in both the cell lines. Furthermore, at dose of 20 mg/kg, both pinostrobin (9) and cajanus lactone (4) were found to reduce LPS-induced TNF-α levels by 48.6% and 55.0% respectively and IL-1β levels by 53.1% and 41.8% respectively in Sprague Dawley (SD) rats. These findings suggest that C. cajan L. leaves can be developed as an effective herbal remedy for the treatment and prevention of inflammation or associated ailments.  相似文献   

17.
Two new diarylheptanoids with a tetrahydropyran ring, kravanhol A (1) and kravanhol B (2), along with one known diarylheptanoid renealtin A (3) were isolated from the fruits of Amomum kravanh. The structures of compounds 1 and 2 were established by analysis of spectroscopic data and their absolute configurations were determined by Mosher's method and CD experiments. Compound 2 showed inhibitory effect on nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages with an IC50 value of 38.9 ± 1.8 μM.  相似文献   

18.
For finding the novel inhibitor of nuclear factor κB activity, a series of benzimidazole derivatives were rationally designed, synthesized and systematically studied for their in vitro activities against LPS induced NF-κB inhibition in RAW 264.7 cells using the SEAP assay based on the flexible chalcone JSH ((E)-1-(2-hydroxy-6-(isopentyloxy)phenyl)-3-(4-hydroxy phenyl)prop-2-en-1-one) which was previously reported. Although most of the benzimidazole derivatives showed strong inhibitory activity in low micromolar potency, 2-(4-methoxybenzyl)-1H-benzo[d]imidazole (3m; IC50 = 1.7 μM) and 2-(2-methoxybenzyl)-1H-benzo[d]imidazole (3n; IC50 = 2.4 μM) showed the best inhibition. The structure activity relationship revealed that 2-benzylbenzimidazole scaffold with hydrogen bonding acceptor on phenyl ring appears as a pharmacophore.  相似文献   

19.
Two new pyranoflavonoids, morustralins A (1) and B (2), a new natural benzene derivative, one benzenoid (Z)-1-hydroxy-4-(2-nitroethenyl)benzene (3), and thirty known compounds were isolated and characterized from the root bark of Morus australis. The structures of the new compounds were established from spectroscopic and spectrometric analyses. Ten isolates (110) were examined for inhibitory effects on adenosine diphosphate (ADP)-, arachidonic acid (AA)-, and platelet-aggregating factor (PAF)-induced platelet aggregation. Among the tested compounds, compound 3 displayed the most significant inhibition of ADP- and AA-induced platelet aggregation with IC50 values of 9.76 ± 5.54 and 9.81 ± 2.7 μM, respectively. In addition, eight purified compounds (310) were examined for inhibition of nitric oxide (NO) production in RAW 264.7 cells and six compounds (38) displayed significant inhibitory effects with IC50 values ranging from 2.1 ± 0.3 to 6.3 ± 0.6 μM.  相似文献   

20.
Microbial transformation of ursolic acid (1) by Bacillus megaterium CGMCC 1.1741 was investigated and yielded five metabolites identified as 3-oxo-urs-12-en-28-oic acid (2); 1β,11α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3); 1β-hydroxy-3-oxo-urs-12-en-28, 13-lactoe (4); 1β,3β, 11α-trihydroxyurs-12-en-28-oic acid (5) and 1β,11α-dihydroxy-3-oxo-urs-12-en-28-O-β-d-glucopyranoside (6). Metabolites 3, 4, 5 and 6 were new natural products. Their nitric oxide (NO) production inhibitory activity was assessed in lipopolysaccharide (LPS) – stimulated RAW 264.7 cells. Compounds 3 and 4 exhibited significant activities with the IC50 values of 1.243 and 1.711 μM, respectively. A primary structure-activity relationship was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号