首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that plays a critical role in down-regulating insulin signaling through dephosphorylation of the insulin receptor. Studies have shown that PTP1B knock-out mice showed increased insulin sensitivity in muscle and liver as well as resistance to obesity. A series of functionalized acetophenones were synthesized and evaluated for their PTP1B inhibitory activity. Some of the screened compounds displayed good inhibitory activity.  相似文献   

2.
Berberine was investigated as an inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B) in an attempt to explain its anti-hyperglycemic activitiy. The investigation included simulated docking experiments to fit berberine within the binding pocket of h-PTP 1B. Berberine was found to readily fit within the binding pocket of h-PTP 1B in a low energy orientation characterized with optimal electrostatic attractive interactions bridging the isoquinolinium positively charged nitrogen atom of berberine and the negatively charged acidic residue of ASP 48 of h-PTP 1B. Experimentally, berberine was found to potently competitively inhibit recombinant h-PTP 1B in vitro (Ki value = 91.3 nM). Our findings strongly suggest that h-PTP 1B inhibition is at least one of the reasons for the reported anti-hyperglycemic activities of berberine.  相似文献   

3.
Protein tyrosine phosphatase 1B (PTP1B) functions as major negative regulator of insulin and leptin signaling pathways. In view ofthis, PTP1B is an significant target for drug development against cancer, diabetes and obesity. The aim of the current study is toidentify PTP1B inhibitors by means of virtual screening with docking. 523,366 molecules from ZINC database have been screenedand based on DOCK grid scores and hydrogen bonding interactions five new potential inhibitors were identified. ZINC12502589,ZINC13213457, ZINC25721858, ZINC31392733 and ZINC04096400 were identified as potential lead molecules for inhibition ofPTP1B. The identified molecules were subjected to Lipinski''s rule of five parameters and found that they did not violate any rule.More specific analysis of pharmacological parameters may be scrutinized through a complete ADME/Tox evaluation. Pharmaalgorithm was used to Calculate ADME–Tox profiles for such molecules. In general, all the molecules presented advantages and aswell as disadvantages when compared to each other. No marked difference in health effects and toxicity profiles were observedamong these molecules.  相似文献   

4.
PTPases are considered to be involved in the etiology of diabetes mellitus and neural diseases, such as Alzheimer's disease and Parkinson's disease. Therefore, PTPase inhibitors should be useful tools to study the role of PTPases in these diseases and other biological phenomena, and which can be developed into chemotherapeutic agents. In the present study, we have synthesized novel benzofuran isoxazolines 13-21 via 1,3-dipolar cycloaddition reaction using karanjin (1) and kanjone (2), isolated from Pongamia pinnata fruits. All the synthesized compounds were evaluated against PTPase enzyme. Compounds 19 and 20 displayed significant inhibitory activity with IC50 values 76 and 81 microM, respectively.  相似文献   

5.
Three-dimensional quantitative structure-activity relationship (QSAR) studies were conducted on two classes of recently explored compounds with known YopH inhibitory activities. Docking studies were employed to position the inhibitors into the YopH active site to determine the probable binding conformation. Good correlations between the predicated binding free energies and the inhibitory activities were found for two subsets of phosphate mimetics: alpha-ketocarboxylic acid and squaric acid (R2=0.70 and 0.68, respectively). The docking results also provided a reliable conformational alignment scheme for 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed based on the docking conformations, giving q2 of 0.734 and 0.754 for CoMFA and CoMSIA models, respectively. The 3D-QSAR models were significantly improved after removal of an outlier (q2=0.829 for CoMFA and q2=0.837 for CoMSIA). The predictive ability of the models was validated using a set of compounds that were not included in the training set. Mapping the 3D-QSAR models to the active site of YopH provides new insight into the protein-inhibitor interactions for this enzyme. These results should be applicable to the prediction of the activities of new YopH inhibitors, as well as providing structural implications for designing potent and selective YopH inhibitors as antiplague agents.  相似文献   

6.
A series of substituted phenoxy-3-piperazin-1-yl-propan-2-ols has been synthesized and evaluated for PTP1B inhibitory activity in vitro and for antidiabetic activity in vivo. Two molecules viz. 4a and 5b showed PTP1B inhibition of 31.58% and 35.90% at 100 μM concentration. The compound 4a also showed 40.3% normalization of plasma glucose levels at 100 mg/kg in Sugar-loaded model (SLM) and 32% activity in Streptozodocin model (STZ). The docking studies of these molecules revealed that hydrogen bond formation with Arg221 is important for activity.  相似文献   

7.
Potent,selective inhibitors of protein tyrosine phosphatase 1B   总被引:4,自引:0,他引:4  
We have previously reported a novel series of oxalyl-aryl-amino benzoic acid-based, catalytic site-directed, competitive, reversible protein tyrosine phosphatase 1B (PTP1B) inhibitors. With readily access to key intermediates, we utilized a solution phase parallel synthesis approach and rapidly identified a highly potent PTP1B inhibitor (19, K(i)=76 nM) with moderate selectivity (5-fold) over T-cell PTPase (TCPTP) through interacting with a second phosphotyrosine binding site (site 2) in the close proximity to the catalytic site.  相似文献   

8.
A series of 5,7-dihydroxyflavanone derivatives were synthesized and identified as reversible and competitive protein tyrosine phosphatase (PTP) 1B inhibitors with IC50 values in the micromolar range. Compound 4k had the most potent in vitro inhibition activity against PTP1B (IC50 = 2.37?±?0.37 μM) and the greatest selectivity (3.7-fold) for PTP1B relative to T-cell protein tyrosine phosphatase. Cell-based studies revealed that 4k was membrane-permeable and enhanced insulin receptor tyrosine phosphorylation in CHO/hIR cells.  相似文献   

9.
A novel pyridothiophene inhibitor of PTP1B was discovered by rational screening of phosphotyrosine mimics at high micromolar concentrations. The potency of this lead compound has been improved significantly by medicinal chemistry guided by X-ray crystallography and molecular modeling. Excellent consistency has been observed between structure-activity relationships and structural information from PTP1B-inhibitor complexes.  相似文献   

10.
We describe herein the design, synthesis, and biological evaluation of a series of novel protein tyrosine phosphatase 1B (PTP1B) inhibitor retrochalcones having an allyl chain at the C-5 position of their B ring. Biological screening results showed that the majority of these compounds exhibited an inhibitory activity against PTP1B. Thus, preliminary structure-activity relationship (SAR) and quantitative SAR analyses were conducted. Among the compounds, 23 was the most potent inhibitor, exhibiting the highest in vitro inhibitory activity against PTP1B with an IC50 of 0.57?µM. Moreover, it displayed a significant hepatoprotective property via activation of the IR pathway in type 2 diabetic db/db mice. In addition, the results of our docking study showed that 23, as a specific inhibitor of PTP1B, effectively transformed the WPD loop from “close” to “open” in the active site. These results may reveal suitable compounds for the development of PTP1B inhibitors.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator in insulin- and leptin-signaling cascades as well as a positive regulator in tumorigenesis, and much attention has been paid to PTP1B inhibitors as potential therapies for diabetes, obesity, and cancer. In the present study, the screening of a compound library of licorice flavonoids allowed for the discovery of several compounds, including licoagrone (3), licoagrodin (4), licoagroaurone (5), and isobavachalcone (6), as new PTP1B inhibitors. It was revealed that these compounds inhibit the activity of PTP1B in different modes and with different selectivities and that they exhibit different cellular activity in the insulin-signaling pathway. Glycybenzofuran (1), a competitive PTP1B inhibitor, showed both excellent inhibitory selectivity against PTP1B and cellular activity on the insulin-stimulated Akt phosphorylation level. The similarity of its action profiling in the insulin-signaling pathway suggested its potential as a new anti-insulin-resistant drug candidate.  相似文献   

12.
Taing M  Keng YF  Shen K  Wu L  Lawrence DS  Zhang ZY 《Biochemistry》1999,38(12):3793-3803
Several protein tyrosine phosphatases (PTPases) have been implicated as regulatory agents in the insulin-stimulated signal transduction pathway, including PTP1B, PTPalpha, and LAR. Furthermore, since all three enzymes are suggested to serve as negative regulators of insulin signaling, one or more may play a pivotal role in the pathogenesis of insulin resistance. We report herein the acquisition of highly selective PTP1B-targeted inhibitors. We recently demonstrated that PTP1B contains two proximal aromatic phosphate binding sites [Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo S. C., and Zhang, Z. Y. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 13420-5], and we have now employed this structural feature to design and synthesize an array of bis(aryldifluorophosphonates). Not only do the lead compounds serve as potent inhibitors of PTP1B but, in addition, several exhibit selectivities for PTP1B versus PTPalpha, LAR, and VHR that are greater than 2 orders in magnitude.  相似文献   

13.
Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors   总被引:3,自引:0,他引:3  
Binding modes of a series of aryloxymethylphosphonates and monoanionic biosteres of phosphate group from a series of benzylic alpha,alpha-diflluoro phosphate and its biosteres as protein tyrosine phosphatase 1B (PTP 1B) inhibitors have been identified by molecular modeling techniques. We have performed docking and molecular dynamics simulations of these inhibitors with PTP 1B enzyme. The initial conformation of the inhibitors for docking was obtained from simulated annealing technique. Solvent accessible surface area calculations suggested that active site of PTP 1B is highly hydrophobic. The results indicate that for aryloxymethylphosphonates, in addition to hydrogen bonding interactions, Tyr46, Arg47, Asp48, Val49, Glu115, Lys116, Lys120 amino acid residues of PTP 1B are responsible for governing inhibitor potency of the compounds. The sulfonate and tetrazole functional groups have been identified as effective monoanionic biosteres of phosphate group and biphenyl ring system due to its favorable interactions with Glu115, Lys116, Lys120 residues of PTP 1B found to be more suitable aromatic functionality than naphthalene ring system for benzylic alpha,alpha-diflluoro phosphate and its biosteres. The information generated from the present study should be useful in the design of more potent PTP 1B inhibitors as anti diabetic agents.  相似文献   

14.
Protein tyrosine phosphatase 1B (PTP 1B), a negative regulator of insulin receptor signaling system, has emerged as a highly validated, attractive target for the treatment of non-insulin dependent diabetes mellitus (NIDDM) and obesity. As a result there is a growing interest in the development of potent and specific inhibitors for this enzyme. This quantitative structure-activity relationship (QSAR) study for a series of formylchromone derivatives as PTP lB inhibitors was performed using genetic function approximation (GFA) technique. The QSAR models were developed using a training set of 29 compounds and the predictive ability of the QSAR model was evaluated against a test set of 7 compounds. The internal and external consistency of the final QSAR model was 0.766 and 0.785. The statistical quality of QSAR models was assessed by statistical parameters r2, r2 (crossvalidated r2), r2pred (predictive r2) and lack of fit (LOF) measure. The results indicate that PTP lB inhibitory activity of the formylchromone derivatives is strongly dependent on electronic, thermodynamic and shape related parameters.  相似文献   

15.
16.
17.
A series of bromophenol derivatives were synthesized and evaluated as protein tyrosine phosphatase 1B (PTP1B) inhibitors in vitro and in vivo based on bromophenol 4e (IC(50)=2.42 μmol/L), which was isolated from red algae Rhodomela confervoides. The results showed that all of the synthesized compounds displayed weak to good PTP1B inhibition at tested concentration. Among them, highly brominated compound 4g exhibited promising inhibitory activity against PTP1B with IC(50) 0.68 μmol/L, which was approximately fourfold more potent than lead compound 4e. Further, compound 4g demonstrated high selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). More importantly, in vivo antidiabetic activities investigations of compound 4g also demonstrated inspiring results.  相似文献   

18.
A novel series of inhibitors that contain an aryl alpha,alpha-difluoro-beta-ketophosphonate group has been synthesized and evaluated against protein tyrosine phosphatase 1B. These compounds exhibit strong inhibitory activity, the best of which has a K(i) value of 0.17 microM. These results demonstrate that aryl alpha,alpha-difluoro-beta-ketophosphonates are powerful phosphotyrosine mimetics for the development of potent PTP inhibitors.  相似文献   

19.
Guided by X-ray crystallography, we have extended the structure-activity relationship (SAR) study on an isoxazole carboxylic acid-based PTP1B inhibitor (1) and more potent and equally selective (>20-fold selectivity over the highly homologous T-cell PTPase, TCPTP) PTP1B inhibitors were identified. Inhibitor 7 demonstrated good cellular activity against PTP1B in COS 7 cells.  相似文献   

20.
Formylchromone inhibits a human protein tyrosine phosphatase PTP1B with a IC(50) value of 73 microM. The chemical reactivity of formylchromone was adjusted by substitution at various positions of the formylchromone skeleton. In an initial assessment of the structure-activity relationship, the most potent inhibitor showed an IC(50) of 4.3 microM against PTP1B and strong or medium selectivity against other human PTPases, LAR and TC-PTP. This compound, however, was not selective against microbial PTPases, YPTP1 and YOP. The potency and selectivity of the formylchromone derivatives expecting further improvements provides a novel pharmacophore for the design of drugs for the treatment of type 2 diabetes and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号