首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of pyranonaphthoquinone derivatives related to the known topoisomerase II inhibitor eleutherin 1 have been shown to act as specific topoisomerase II catalytic inhibitors, with several analogues displaying greater potency than the natural product itself. Amongst the compounds tested were the natural products ventiloquinone L 4 and thysanone 8 with a diverse range of topoisomerase II inhibition properties being observed. Interestingly, the natural products are generally weaker inhibitors than their synthetic counterparts, emphasising that subtle changes in the basic molecular structure of a natural product led to significant changes in the inhibition profile. It has also been demonstrated for the first time that analogues related to nanaomycin A and cardinalin-type dimeric pyranonaphthoquinones exhibit potent topoisomerase II inhibitory properties. With respect to structural features, it appears that the nature of the substituents at C1 on the pyran ring and oxygenated substituents on the aryl ring are critical for anti-topoII activity.Importantly, the topoisomerase II inhibition strength does not correlate well with the measured cytotoxicity against yeast, indicating that other molecular features in the pyranonaphthoquinone family must be considered for the design and use of this structural class as highly specific topoisomerase II inhibitors.  相似文献   

2.
The pyranonaphthoquinone (PNQ) lactone natural products, including 7-deoxykalafungin, have been reported to be potent and selective covalent inhibitors of AKT kinase. In this work we seek to identify structural features of the natural product scaffold that are essential for potency and selectivity. Using a deconstruction approach, we designed and prepared simplified analogues of 7-deoxykalafungin. Testing of the compounds for their ability to inhibit AKT and the closely related kinase PKA revealed that the 3,6-dihydro-2H-pyran ring of the PNQ lactones is required for potent and selective inhibition of AKT. We have also unexpectedly identified a new submicromolar inhibitor of PKA.  相似文献   

3.
The integration of biological and chemical data has provided patterns to identify three new Dysidea species from the Gulf of California (Pacific Ocean, Mexico). These three species are differentiated by distinctive morphological characters, such as the prominent subdermal fibers running along the surface in Dysidea reformensis n. sp., the granular appearance of the surface in conjunction with the consistent habit in Dysidea cachui n. sp., and the skeletal details such as tertiary network between the secondary fibers in Dysidea uriae n. sp. Differences are also observed in the natural products content of these species. Sesquiterpene-hydroquinone derivatives are the main secondary metabolites of D. reformensis and D. cachui, with each species displaying a different chemical profile, while the furanosesquiterpene dendrolasin has been isolated from D. uriae. The distinctive morphological characters and the natural products contained by each species are also compared with those of related Dysidea species.  相似文献   

4.
Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.  相似文献   

5.
Glycosides, clausenosides A and B, and carbazole alkaloids, clausenaline A, claulamine A, and claulamine B, together with 50 known compounds, were isolated from the stems of Clausena lansium. Their structures were determined by means of spectroscopic methods, including that of CD and 1D/2D NMR analysis. Claulamine A has a 1-oxygenated carbazole skeleton with a rare 2,3-lactone ring, and claulamine B represents an hitherto unknown acetal carbazole alkaloid. Thirty-one of the isolated known compounds were evaluated in various assays for anti-inflammatory activity. Among them, imperatorin, isoheraclenin, and osthol exhibited selective and potent inhibition of formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation, and lansiumarin C also decreased nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in lipopolysaccharide (LPS)-induced macrophages. In addition, a modified HPLC method of pre-column derivatization was developed that is more practical for simultaneous analysis of aldose enantiomers as compared to the literature method. The absolute configurations of the sugar moieties in clausenosides A and B were determined with this modified method.  相似文献   

6.
The known fungal metabolic products monocerin and (+)-mellein and the new natural products 7-O-demethylmonocerin, fusarentin 6-methyl ether, and fusarentin 6,7-dimethyl ether have been obtained from two strains of Fusarium larvarum isolated from widely different localities and hosts. The major metabolites, monocerin and the fusarentin ethers, show insecticidal activity in a bioassay against Calliphora erythrocephala.  相似文献   

7.
BackgroundCandida albicans (C. albicans) is an opportunistic pathogen that can cause superficial and life-threatening systemic infections in immunocompromised patients. However, the available clinically antifungals are limited. Therefore, the development of effective antifungal agents and therapies is urgently needed. Quinoline type of compounds were reported to possess potent anti-fungal effect. A series of quinoline derivatives were synthesized. Moreover their inhibitory activities and mechanisms on C. albicans were evaluated in this study.MethodsThe structure of D319 was identified by extensive spectroscopic analysis. The antifungal activity of D319 on C. albicans was evaluated using conventional methods, including the inhibition zone diameters with filter paper, Clinical Laboratory Standard Institute (CLSI) broth microdilution method in vitro, and in a murine model in vivo. Flow cytometry, fluorescence microscopy, western blot, knockout mutant and revertant strain techniques, and molecular modeling were applied to explore the mechanism of action of D319 in anti-Candida.ResultsD319 exhibited potent anti-Candida activity with Minimum Inhibitory Concentration value of 2.5 μg/mL in vitro. D319 significantly improved survival rate and reduced fungal burden compared to vehicle control in a murine model in vivo. The treatment of C. albicans with D319 resulted in fungal apoptosis through reactive oxygen species (ROS) accumulation in C. albicans. Furthermore, D319 inhibited the glyoxylate enzyme isocitrate lyase (ICL) of C. albicans, which was also confirmed by docking analysis.ConclusionsQuinoline compound D319 exhibited strong anti-Candida activities in vitro and in vivo models through inhibiting ICL activity and ROS accumulation in C. albicans.General significanceThis study showed that compound D319 as a novel isocitrate lyase inhibitor, would be a promising anti-Candida lead compound, which provided a potential application of this type of compounds in fighting clinical fungal infections. Furthermore, this study also supported ICL as a potential target for anti-Candida drug discovery.  相似文献   

8.
Retama raetam (Forsk.) Webb & Berthel plant has been traditionally used for the treatment of diabetes mellitus and hypertension. Interest in the medicinal chemistry of the plant in the past resulted in the isolation of a number of compounds with anti-hyperglycemic activity. The current work is a further extension of our recent work in which we isolated and characterized seven new flavonoids from Retama raetam with preliminary biological activity screening. It addresses the α-glucosidase inhibitory activity and molecular docking studies of the flavonoids. Retamasin D, G, H, and erysubin A and B noncompetitively inhibited the enzyme whereas retamasin C and F exhibited competitive inhibition. Moreover, retamasin C, F, G, and erysubin A and B carry dual activity in addition to α-glucosidase inhibition. Our previous studies have shown that they also caused significant stimulation of insulin from the blood-perfused pancreatic islets of Langerhans of mice. The C6 and C8 substituent groups greatly influenced the inhibition potency of the compounds. The most potent inhibitor was retamasin H with the γ-lactone ring substituent at C6 position of the main flavonoid moiety. Notable active chemical groups in the target compounds include γ-lactone, dihydropyran and dihydrofuran rings with hydroxyl and geminal methyl groups. Molecular modeling studies revealed that the compounds fit well in the α-glucosidase active site by interacting with important active site residues. These findings will incorporate new chemical, structural and functional diversity to the search and drug development of α-glucosidase inhibitors as anti-diabetic drugs.  相似文献   

9.
Enzymatic inactivation of fungal toxins is an attractive strategy for the decontamination of food and feeding stuff. A constitutively expressed enzyme opening the lactone linkage within the macrocyclic ring system of zearalenone (ZON) was isolated fromGliocladium roseum. The enzyme has been shown to catalyze the transformation of the mycotoxin ZON and therefore has been named ZON degrading enzyme. The resulting products of the enzymatic reaction are less toxic because they have lost their estrogenic capacity. In this study, we used scanning electron microscopy to evaluate the possible mycoparasitism betweenFusarium graminearum andG. roseum. The ZON-degrading enzyme could be isolated fromG. roseum cultures and biochemically characterized. It has been found to be similar to superoxide-dismutases at its N-teminus.  相似文献   

10.
With bioactivity-guided phenotype screenings, a potent anti-inflammatory compound f152A1 has been isolated, characterized and identified as the known natural product LL-Z1640-2. Metabolic instability precluded its use for the study on animal disease models. Via total synthesis, a potent, metabolically stabilized analog ER-803064 has been created; addition of the (S)-Me group at C4 onto f152A1 has resulted in a dramatic improvement on its metabolic stability, while preserving the anti-inflammatory activities.  相似文献   

11.
Four novel secoaromadendrane-type sesquiterpene hemiacetals, plagiochilines C, D, E and F, together with the previously known (?)-bicyclogermacrene, have been isolated from the liverwort, Plagiochila asplenioides and their structures have been spectroscopically elucidated. From Plagiochila semidecurrens plagiochilines A and C have been obtained along with (?)-bicyclogermacrene and its related sesquiterpene hydrocarbons.  相似文献   

12.
Fomannoxin is a biologically active benzohydrofuran, which has been suggested to be involved in the pathogenicity of the root rotting fungus Heterobasidion annosum sensu lato. The biosynthesis of fomannoxin was investigated through an isotopic enrichment study utilizing [1-13C]glucose as metabolic tracer. 13C NMR spectroscopic analysis revealed the labeling pattern and showed that the isoprene building block originates from the mevalonic acid pathway, whereas the aromatic motif is formed via the shikimic acid route by elimination of pyruvate from chorismic acid. A natural product, 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (1), was isolated and characterized, and was suggested to be a key intermediate in the biosynthesis of fomannoxin and related secondary metabolites previously identified from the H. annosum fungal species complex.  相似文献   

13.
The soil-dwelling fungus Aspergillus terreus was isolated from sediment collected from the lake of Wadi EI Natrun in Egypt. Co-cultivation of A. terreus with the bacteria Bacillus subtilis and Bacillus cereus on solid rice medium resulted in an up to 34-fold increase in the accumulation of constitutively present fungal natural products (415) compared to axenic cultures of A. terreus. The fungal products included two new butyrolactone derivatives, isobutyrolactone II (1) and 4-O-demethylisobutyrolactone II (2), together with the known N-(carboxymethyl)anthranilic acid (3) that were not present in axenic fungal controls and were only detected during co-cultivation with B. subtilis or with B. cereus. The structures of all compounds were unambiguously elucidated by 1D and 2D NMR spectroscopy, and by HRESIMS measurements, as well as by comparison with the literature. In a second set of experiments, A. terreus was co-cultured with Streptomyces lividans and with Streptomyces coelicolor. These co-cultivation experiments failed to induce fungal natural product accumulation in contrast to co-cultures with Bacillus sp. Compounds 5 and 14 showed weak inhibition of B. cereus with minimal inhibitory concentrations (MICs) of 64 μg/mL, whereas only 8 showed moderate cytotoxicity against the murine lymphoma (L5178Y) cell line with inhibition of 80% at a dose of 10 μg/mL.  相似文献   

14.
Ergoline (i.e., ergot) alkaloids are a group of physiologically active natural products occurring in the taxonomically unrelated fungal and plant taxa, Clavicipitaceae and Convolvulaceae, respectively. The disjointed occurrence of ergoline alkaloids seems to contradict the frequent observation that identical or at least structurally related natural products occur in organisms with a common evolutionary history. This problem has now been solved by the finding that not only graminaceous but also some dicotyledonous plants belonging to the family Convolvulaceae, such as Ipomoea asarifolia and Turbina corymbosa, form close associations with ergoline alkaloid producing fungi, Periglandula ipomoeae and Periglandula turbinae. These species belong to the newly established genus Periglandula within the Clavicipitaceae. The fungus–plant associations are likely to be mutualistic symbioses.  相似文献   

15.
Morphogenesis in the yeast Saccharomyes cerevisiae consists primarily of bud formation. Certain cell division cycle (CDC) genes, CDC3, CDC10, CDC11, CDC12, are known to be involved in events critical to the pattern of bud growth and the completion of cytokinesis. Their products are associated with the formation of a ring of neck filaments that forms at the region of the mother cell-bud junction during mitosis. Morphogenesis in Candida albicans, a major fungal pathogen of humans, consists of both budding and the formation of hyphae. The latter is thought to be related to the pathogenesis and invasiveness of C. albicans. We have isolated and characterized C. albicans homologs of the S. cerevisiae CDC3 and CDC10 genes. Both C. albicans genes are capable of complementing defects in the respective S. cerevisiae genes. RNA analysis of one of the genes suggests that it is a regulated gene, with higher overall expression levels during the hyphal phase than in the yeast phase. Not surprisingly, DNA sequence analysis reveals that the proteins share extensive homology at the amino acid level with their respective S. cerevisiae counterparts. Related genes are also found in other species of Candida and, more importantly, in filamentous fungi such as Aspergillus nidulans and Neurospora crassa. A database search revealed significant sequence similarity with two peptides, one from Drosophila and one from mouse, suggesting strong evolutionary conservation of function.  相似文献   

16.
Invasive fungal infections are a major complication for individuals with compromised immune systems. One of the most significant challenges in the treatment of invasive fungal infections is the increased resistance of many organisms to widely used antifungals, making the development of novel antifungal agents essential. Many naturally occurring products have been found to be effective antimicrobial agents. In particular, saponins with spirostane glycosidic moieties—isolated from plant or marine species—have been shown to possess a range of antimicrobial properties. In this report, we outline a novel approach to the synthesis of a number of functionalized spirostane molecules that can be further used as building blocks for novel spirostane-linked glycosides and present results from the in vitro screenings of the antifungal potential of each derivative against four fungal species, including Candida albicans, Cryptococcus neoformans, Candida glabrata, and the filamentous fungus Aspergillus fumigatus.  相似文献   

17.
Marine sponge-associated actinomycetes represent an exciting new resource for the identification of new and novel natural products . Previously, we have reported the isolation and structural elucidation of actinosporins A (1) and B (2) from Actinokineospora sp. strain EG49 isolated from the marine sponge Spheciospongia vagabunda. Herein, by employing different fermentation conditions on the same microorganism, we report on the isolation and antioxidant activity of structurally related metabolites, actinosporins C (3) and D (4). The antioxidant potential of actinosporins C and D was demonstrated using the ferric reducing antioxidant power (FRAP) assay. Additionally, at 1.25 μM, actinosporins C and D showed a significant antioxidant and protective capacity from the genomic damage induced by hydrogen peroxide in the human promyelocytic (HL-60) cell line.  相似文献   

18.
With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.  相似文献   

19.
Ergothioneine (EGT) is a histidine betaine derivative that exhibits antioxidant action in humans. EGT is primarily synthesized by fungal species and a number of bacterial species. A five-gene cluster (egtA, egtB, egtC, egtD & egtE) responsible for EGT production in Mycobacteria smegmatis has recently been identified. The first fungal biosynthetic EGT gene (NcEgt-1) has also been identified in Neurospora crassa. NcEgt-1 contains domains similar to those found in M. smegmatis egtB and egtD. EGT is biomembrane impermeable. Here we inferred the evolutionary history of the EGT cluster in prokaryotes as well as examining the phyletic distribution of Egt-1 in the fungal kingdom. A genomic survey of 2509 prokaryotes showed that the five-gene EGT cluster is only found in the Actinobacteria. Our survey identified more than 400 diverse prokaryotes that contain genetically linked orthologs of egtB and egtD. Phylogenetic analyses of Egt proteins show a complex evolutionary history and multiple incidences of horizontal gene transfer. Our analysis also identified two independent incidences of a fusion event of egtB and egtD in bacterial species. A genomic survey of over 100 fungal genomes shows that Egt-1 is found in all fungal phyla, except species that belong to the Saccharomycotina subphylum. This analysis provides a comprehensive analysis of the distribution of the key genes involved in the synthesis of EGT in prokaryotes and fungi. Our phylogenetic inferences illuminate the complex evolutionary history of the genes involved in EGT synthesis in prokaryotes. The potential to synthesize EGT is a fungal trait except for species belonging to the Saccharomycotina subphylum.  相似文献   

20.
Two esteroproteolytic enzymes (A and D) have been isolated from the mouse submaxillary gland and shown to be pure by ultracentrifugation, immunoelectrophoresis, acrylamide-gel electrophoresis, and amino acid analyses. The enzymes have molecular weights of approximately 30,000 and are structurally and antigenically related. Narrow pH optima between 7.5 and 8.0 are exhibited by both enzymes. The “pK1's” are between 6.0 and 6.5 and the “pK2's” are near 9.0. A marked preference for arginine-containing esters is shown by both enzymes. The maximum specific activity of enzyme A on p-tosylarginine methyl ester (TAME) at pH 8 was 2500–3000 μm min?1 mg?1 and for enzyme D, 400–600 μm min?1 mg?1. With TAME as substrate, the Km for enzyme A was 8 × 10?4m at 25 °C and 6 × 10?4m at 37 °C. For D, Km was 3 × 10?4 at 25 °C and 2 × 10?4m at 37 °C.An apparent activation of enzyme D by tosylarginine (TA), a product of TAME hydrolysis, and all α-amino acids examined was due to removal of an inhibitor by chelation. This effect could be duplicated by 8-hydroxyquinoline and diethyldithiocarbamate but not by EDTA. Enzyme A was not affected by these substances to any remarkable extent. Several divalent ions proved to be potent inhibitors of enzyme D. Both enzymes are inactivated by the active site reagents diisopropyl phosphofluoridate and tosyllysine chloromethylketone but much less rapidly than is trypsin. Nitrophenyl-4-guanidionobenzoate reacts with a burst of nitrophenol liberation but with a rapid continuing hydrolysis. One active site per molecule is indicated. Enzyme D is inactivated by urea, reversibly at 10 m and with maximal permanent losses at 6 m. Autolysis of the unfolded form by the native enzyme when they coexist at intermediate urea concentrations appears to occur.Identity of enzyme D and the epithelial growth factor binding protein is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号