首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
With the aim to discover novel HDAC inhibitors with high potency and good safety profiles, we have designed a small library based on a N-hydroxy-(4-oxime)-cinnamide scaffold. We describe the synthesis of these novel compounds and some preliminary in vitro cytotoxic activity on three tumor cell lines, NB4, H460 and HCT116, as well as their inhibitory activity against class I, II and IV HDAC. Several 4-oxime derivatives demonstrated a promising inhibitory activity on HDAC6 and HDAC8 coupled to a good selectivity profile.  相似文献   

2.
Screening our in-house compound collection using a cell based Plasmodium falciparum proliferation assay we discovered a known pan-kinase inhibitor scaffold as a hit. Further optimization of this series led us to a novel benzamide scaffold which was devoid of human kinase activity while retaining its antiplasmodial activity. The evolution of this compound series leading to optimized candidates with good cellular potency against multiple strains as well as decent in vivo profile is described in this Letter.  相似文献   

3.
PIN1 is considered as a therapeutic target for a wide variety of tumours. However, most of known inhibitors are devoid of cellular activity despite their good enzyme inhibitory profile. Hence, the lack of effective compounds for the clinic makes the identification of novel PIN1 inhibitors a hot topic in the medicinal chemistry field. In this work, we reported a virtual screening study for the identification of new promising PIN1 inhibitors. A receptor-based procedure was applied to screen different chemical databases of commercial compounds. Based on the whole workflow, two compounds were selected and biologically evaluated. Both ligands, compounds VS1 and VS2, showed a good enzyme inhibitory activity and VS2 also demonstrated a promising antitumoral activity in ovarian cancer cells. These results confirmed the reliability of our in silico protocol and provided a structurally novel ligand as a valuable starting point for the development of new PIN1 inhibitors.  相似文献   

4.
Myeloperoxidase (MPO) activity and subsequent generation of hypochlorous acid has been associated with the killing of host-invading microorganisms (e.g. bacteria, viruses, and fungi). However, during oxidative stress, high MPO activity can damage host tissue and is linked to several chronic inflammatory conditions. Herein, we describe the development of a novel biaryl, indole-pyrazole series of irreversible mechanism-based inhibitors of MPO. Derived from an indole-containing high-throughput screen hit, optimization efforts resulted in potent and selective 6-substituted indoles with good oral bioavailability and in vivo activity.  相似文献   

5.
Synthesis, SAR, and evaluation of aryl triazoles as novel gamma secretase modulators (GSMs) are presented in this communication. Starting from the literature and in-house leads, we evaluated a range of five-membered heterocycles as replacements for olefins commonly found in non-acid GSMs. 1,2,3-C-aryl-triazoles were identified as suitable replacements which exhibited good modulation of γ-secretase activity, excellent pharmacokinetics and good central lowering of Aβ42 in Sprague-Dawley rats.  相似文献   

6.
The explosive epidemicity of amoebiasis caused by the facultative gastrointestinal protozoan parasite Entamoeba histolytica is a major public health problem in developing countries. Multidrug resistance and side effects of various available antiamoebic drugs necessitate the design of novel antiamobeic agents. The cysteine biosynthetic pathway is the critical target for drug design due to its significance in the growth, survival and other cellular activities of E. histolytica. Here, we have screened 0.15 million natural compounds from the ZINC database against the active site of the EhOASS enzyme (PDB ID. 3BM5, 2PQM), whose structure we previously determined to 2.4 Å and 1.86 Å resolution. For this purpose, the incremental construction algorithm of GLIDE and the genetic algorithm of GOLD were used. We analyzed docking results for top ranking compounds using a consensus scoring function of X-Score to calculate the binding affinity and using ligplot to measure protein-ligand interactions. Fifteen compounds that possess good inhibitory activity against EhOASS active site were identified that may act as potential high affinity inhibitors. In vitro screening of a few commercially available compounds established their biological activity. The first ranked compound ZINC08931589 had a binding affinity of ∼8.05 µM and inhibited about 73% activity at 0.1 mM concentration, indicating good correlation between in silico prediction and in vitro inhibition studies. This compound is thus a good starting point for further development of strong inhibitors.  相似文献   

7.
As part of our investigation into pyrazolo[1,5-a]pyridines as novel p110α selective PI3 kinase inhibitors, we report a range of analogues with improved aqueous solubility by the addition of a basic amine. The compounds demonstrated comparable p110α potency and selectivity to earlier compounds but with up to 1000× greater aqueous solubility, as the hydrochloride salts. The compounds also displayed good activity in a cellular assay of PI3 kinase activity.  相似文献   

8.
A novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure–activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model.  相似文献   

9.
hNav1.7 small molecular inhibitors have attracted lots of attention by its unique analgesic effect. Herein, we report the design and synthesis of a novel series of tetrahydropyridine analogs as hNav1.7 inhibitors for analgesia. Detail structural–activity relationship (SAR) studies were undertaken towards improving hNav1.7 activity, in vitro ADME, and in vivo PK profiles. These efforts resulted in the identification of compound (?)-15h, a highly potent and selective hNav1.7 inhibitor with good ADME and PK profiles.  相似文献   

10.
Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug – paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.  相似文献   

11.
Leucine-rich repeat kinase 2 (LRRK2) has been suggested as a potential therapeutic target for Parkinson’s disease. Herein we report the discovery of 5-substituent-N-arylbenzamide derivatives as novel LRRK2 inhibitors. Extensive SAR study led to the discovery of compounds 8e, which demonstrated potent LRRK2 inhibition activity, high selectivity across the kinome, good brain exposure, and high oral bioavailability.  相似文献   

12.
Natural products represent valuable chemical scaffolds for drug development. A recent success story in this context was artemisinin, which is not only active against malaria but also to other diseases. This raised the interest of artemisinin's potential for drug repurposing. On the present review, we give an overview on artemisinin's antiviral activity. There is good in vitro and in vivo evidence for the activity of artemisinin and its derivatives against DNA viruses of the Herpesviridae and Hepadnaviridae families such as cytomegaloviruses, human herpesvirus 6, herpes simplex viruses 1 and 2, Epstein-Barr virus and Hepatitis B virus. The evidence is weaker for Polyomaviruses and papilloma viruses. Weaker or no inhibitory activity in vitro has been reported for RNA viruses such as human immunodeficiency viruses 1 and 2, hepatitis C virus, influenza virus and others. Interestingly, the artemisinin derivative artesunate did not exert cross-resistance to ganciclovir-resistant HCMV and exerted synergistic inhibition in combination with several clinically established antiviral standard drugs. The antiviral activity of first generation artemisinin derivatives (e.g. artesunate, artemether, etc.) was enhanced by novel derivatives, including dimer and trimer molecules. First results on patients indicating activity in a subset of HCMV patients. Novel developments in the field of nanotechnology and synthetic biology to bioengineer microorganisms for artemisinin production may pave the way for novel drugs to fight viral infections with artemisinin-based drugs.  相似文献   

13.
CCR6 has been implicated in both autoimmune diseases and non-autoimmune diseases. Thus, inhibition of CCR6-dependent cell migration is an attractive strategy for their treatment. An orally available small molecule inhibitor of CCR6 could therefore be a useful biological probe for the pathophysiological studies. Initial SAR study of a hit compound provided potent N-benzenesulfonylpiperidine derivatives that suppressed CCL20-induced Gi signals. By subsequent scaffold morphing of the central ring and further optimization, we identified a novel series of 1,4-trans-1-benzenesulfonyl-4-aminocyclohexanes as potent and selective CCR6 inhibitors with good pharmacokinetic properties. Our compounds showed good correlation between Gi signal inhibitory activity and cell migration inhibitory activity in human CCR6-transfected CHO cells. In addition, representative compound 35 potently inhibited CCR6-dependent cell migration and the increase in ERK phosphorylation in human primary cells. Therefore, the compound could be used effectively as a biological probe against human CCR6.  相似文献   

14.
A new series of 1β-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and their activities against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. First, a benzyl moiety was introduced at the C-6 position of imidazo[5,1-b]thiazole attached to the carbapenem. These benzylated molecules showed potent anti-MRSA activity, but poor water solubility. In order to overcome this drawback, we designed and synthesized di- and tricationic carbapenems and finally discovered a novel carbapenem (15i), which exhibited excellent anti-MRSA activity and good water solubility.  相似文献   

15.
Thrombin-inhibiting DNA aptamers have already been obtained through the systematic evolution of ligands by exponential enrichment (SELEX). However, SELEX is a method that screens DNA aptamers that bind to their target molecules, and it sometimes fails to screen good inhibitors. Therefore, it is necessary to develop a method of screening DNA aptamers based on their inhibitory effects on the target molecules. We developed a novel method of detecting aptamers using an evolution-mimicking algorithm, and we applied it to the search of new aptamers which inhibit thrombin. First, we randomly designed and synthesized ten 15mer oligonucleotides presumed to form G-quartet structures, and then measured their thrombin-inhibiting activities. The aptamers showing high inhibitory activity were selected, and we shuffled and mutated those sequences in silico to generate 10 new sequences of next-generation aptamers. After repeating the cycle five times, we successfully obtained the same aptamers reported previously, and they showed high inhibitory activity. In addition, we added 8mer oligonucleotides to both the 5′ and the 3′ end of the selected 15mer aptamers, and then repeated the evolution in silico. After two cycles, we were able to obtain aptamers with higher inhibitory activity than that of the 15mer aptamers.  相似文献   

16.
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a novel therapeutic target for the treatment of inflammation and pain. In the preceding letter, we detailed the discovery of clinical candidate PF-04693627, a potent mPGES-1 inhibitor possessing a novel benzoxazole structure. While PF-04693627 was undergoing further preclinical profiling, we sought to identify a back-up mPGES-1 inhibitor that differentiated itself from PF-04693627. The design, synthesis, mPGES-1 activity and in vivo PK of a novel set of substituted benzoxazoles are described herein. Also described is a conformation-based hypothesis for mPGES-1 activity based on the preferred conformation of the cyclohexane ring within this class of inhibitors.  相似文献   

17.
Multidrug resistance (MDR) is one of the main obstacles of clinical chemotherapy. A great deal of research shows that the occurrence of drug resistance in various malignant tumors is closely related to the expression of P-glycoprotein (P-gp) on the surface of the cell membrane. In this paper, based on the structure-activity relationship of phenylethyl tetrahydroisoquinoline, we choose tariquidar as the lead compound for the design and synthesis of 17 novel tetrahydroisoquinoline P-gp inhibitors. Additionally, in vitro and in vivo cytotoxicity assays and reversed MDR activity assays were evaluated. Among them, compound 3 had a good reversal of MDR activity and the reversal mechanism study of it was carried out. All of these results demonstrated that compound 3 was considered to be a promising P-gp-mediated MDR reversal candidate.  相似文献   

18.
A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30 KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0 °Cand the optimal activity at pH 8.0 and 30 °C with good thermostability and quickened inactivation above 60 °C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications.  相似文献   

19.
20.
Spermidine/spermine N1-acetyltransferase 1 (SSAT1) is a key enzyme that catalyzes the catabolism of polyamines. SSAT1 is a very important enzyme because it not only maintains the homeostasis of polyamines but also is involved in many physiological and pathological events. As such, a rapid assay of SSAT1 activity is valuable in drug screening and clinical diagnostics. Here, we report a novel colorimetric assay for monitoring SSAT1 activity in zebrafish (zSSAT1). In comparison with the available SSAT1 assays, this new method is cost-effective and simple. The optimal zSSAT1 activity was obtained below 55 °C in a mild alkaline environment. The Km values of zSSAT1 for spermidine and spermine are 55 and 182 μM, respectively, whereas putrescine is not a good substrate for zSSAT1. In addition to enzyme kinetic studies, the colorimetric assay was also used to detect the cellular activity of SSAT1. Thus, the current method is a reliable assay for determining SSAT1 activity with many potential applications in medical biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号