首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The colony-stimulating factor 1 receptor (CSF-1R), immunoprecipitated with either anti-phosphotyrosine or anti-receptor antibodies from lysates of ligand-stimulated cells, is associated with a phosphatidylinositol (PtdIns) 3-kinase activity. The ligand-independent transforming efficiencies of human CSF-1R mutants containing certain amino acid substitutions at codon 301 in their extracellular domains correlated directly with their levels of associated lipid kinase activity. A tyrosine kinase defective CSF-1R mutant (CSF-1R[met616]), containing a mutated ATP binding site, lacked associated PtdIns 3-kinase activity in immune complexes recovered from CSF-1-stimulated cells. However, CSF-1R[met616] associated with PtdIns 3-kinase when phosphorylated in trans in CSF-1-stimulated cells coexpressing an enzymatically competent CSF-1R tyrosine kinase. Another CSF-1R mutant, (CSF-1R[delta KI]), lacking 67 amino acids from its intracellular 'kinase insert' domain, exhibited a partially impaired ligand-dependent mitogenic response and a significant reduction in its associated PtdIns 3-kinase activity. Ligand-stimulated CSF-1R[delta KI] molecules contained levels of phosphotyrosine almost equivalent to wild-type receptors, but were phosphorylated at different sites in vitro. Therefore, the association of CSF-1R with active PtdIns 3-kinase required the receptor tyrosine kinase activity, was triggered by receptor phosphorylation on tyrosine and, in this series of mutants, correlated with their mitogenic potential. Although the receptor KI domain strongly contributes to the association with PtdIns 3-kinase, this region is not strictly essential for the interaction.  相似文献   

2.
Following the discovery of imidazopyridine 1 as a potent IGF-1R tyrosine kinase inhibitor, the aniline part has been modified with the aim to optimize the properties of this series. The structure-activity relationships against IGF-1R kinase activity as well as inhibition of the hERG ion channel are discussed.  相似文献   

3.
A novel series of 3-arylureidobenzylidene-indolin-2-ones was synthesized and their inhibitory activity against Ret tyrosine kinase investigated in comparison with the Ret inhibitor RPI-1 as a reference compound for this series. A few compounds were able to revert the RETC634R oncogene-transformed morphologic phenotype of NIH3T3(MEN2A) cells and showed a selective antiproliferative activity against these cells as compared to parental NIH3T3 cells or NIH3T3 cells transformed with a non-tyrosine kinase oncogene (NIH3T3(H-RAS)). Inhibition of Ret enzyme activity by effective derivatives was confirmed in a kinase assay. Structure-activity relationship indicated a favourable activity for 5,6-dimethoxyindolinone derivatives with H, OH, or OMe in the para position of the distal aryl ring.  相似文献   

4.
Colony-stimulating factor 1 (CSF-1) triggers the activation of intracellular proteins in macrophages through selective assembly of signalling complexes. The separation of multimeric complexes of the CSF-1 receptor (CSF-1R) by anion-exchange chromatography enabled the enrichment of low-stoichiometry complexes. A significant proportion of the receptor in CSF-1-stimulated cells that neither possessed detectable tyrosine kinase activity nor formed complexes was separated from the receptor pool displaying autokinase activity that formed chromatographically distinct multimeric complexes. A small pool of CSF-1R formed a multimeric complex with phosphatidylinositol-3 kinase (PI-3 kinase), SHP-1, Grb2, Shc, c-Src, Cbl, and a significant number of tyrosine-phosphorylated proteins in CSF-1-stimulated cells. The complex showed a considerable amount of CSF-1R complex-associated kinase activity. A detectable level of the complex was also present in untreated cells. PI-3 kinase in the multimeric complex displayed low lipid kinase activity despite the association with several proteins. The major pool of activated CSF-1R formed transient multimeric complexes with distinctly different tyrosine-phosphorylated proteins, which included STAT3 but also PI-3 kinase, Shc, SHP-1, and Grb2. A significant level of lipid kinase activity was detected in PI-3 kinase in the latter complexes. The different specific enzyme activities of PI-3 kinase in these complexes support the notion that the activity of PI-3 kinase is modulated by its association with CSF-1R and other associated cellular proteins. Specific structural proteins associated with the separate CSF-1R multimeric complexes upon CSF-1 stimulation and the presence of the distinct pools of the CSF-1R were dependent on the integrity of the microtubular network.  相似文献   

5.
S Lin  W Chen    S S Broyles 《Journal of virology》1992,66(5):2717-2723
The nucleotide sequence of the vaccinia virus open reading frame B1 predicts a polypeptide with significant sequence similarity to the catalytic domain of known protein kinases. To determine whether the B1R polypeptide is a protein kinase, we have expressed it in bacteria as a fusion with glutathione S-transferase. Affinity-purified preparations of the fusion protein were found to undergo autophosphorylation and also phosphorylated the exogenous substrates casein and histone H1. Mutation of lysine 41 to glutamine within the conserved kinase catalytic domain II abrogated protein kinase activity on all three protein substrates, supporting the notion that the protein kinase activity is inherent to the B1R polypeptide. Casein and histone H1 were phosphorylated on serine and threonine residues. The B1R fusion protein was phosphorylated on a threonine residue(s) by an apparently intramolecular mechanism. The autophosphorylation reaction resulted in phosphorylation of the glutathione S-transferase portion of the fusion and not the protein kinase domain. The protein kinase activity of B1R was specific for ATP as the phosphate donor; GTP was not utilized to a detectable extent. Immunoblotting experiments with anti-B1R antiserum showed that the protein kinase is located in the virion particle. Chromatography of virion extracts resulted in separation of the B1R protein kinase from the bulk of the total protein kinase activity, indicating that multiple protein kinases are present in the virion particle and that B1R is distinct from the previously described vaccinia virus-associated protein kinase.  相似文献   

6.
We have compared the protein kinase activities of the R1 subunits from herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) ribonucleotide reductase following expression in Escherichia coli. Autophosphorylation activity was observed when kinase assays were performed with immunoprecipitated R1 or proteins purified to homogeneity, and the activity was stimulated by the basic protein protamine. Transphosphorylation of histones or calmodulin by purified or immunoprecipitated HSV-1 and HSV-2 R1 was not observed, and our results suggest that the activities of these two proteins are similar. We further characterized the protein kinase activity of HSV-1 R1 by producing insertion and deletion mutants constructed with a plasmid expressing R1 amino acids 1 to 449. C-terminal deletion analysis identified the catalytic core of the enzyme as comprising residues 1 to 292, and this polypeptide will be useful for structural determinations by X-ray crystallography. Insertion of a 4-amino-acid sequence at sites within the protein kinase domain identified regions essential for activity; insertions at residues 22 and 112 completely inactivated activity, and an insertion at residue 136 reduced activity sixfold. Similar insertions at residues 257, 262, 292, and 343 had no effect on activity. The ATP analog 5'-fluorosulfonylbenzoyladenosine, which covalently modifies conventional eukaryotic kinases at an essential lysine residue within the active site, did label HSV R1, but this labelling occurred outside the N-terminal domain. These data indicate that the HSV R1 kinase is novel and distinct from other eukaryotic protein kinases.  相似文献   

7.
Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the (1248)SFYYS(1252) motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling.  相似文献   

8.
The tyrosine kinase activity of insulin-like growth factor I receptor (IGF1R) is under tight control. Ligand binding to the extracellular portion of IGF1R stimulates autophosphorylation at three sites (Tyr1131, Tyr1135, and Tyr1136) in the activation loop within the tyrosine kinase catalytic domain. Autophosphorylation at all three sites is required for maximum enzyme activity, and for IGF1-stimulated cellular activity of the receptor. Previous studies have not clarified the contributions of the individual tyrosines to enzymatic activation. Here, we produced single Tyr-to-Phe mutations at these positions, and compared activities of the purified kinase domains (unphosphorylated and phosphorylated) with wild-type IGF1R. Rates of autophosphorylation of the three mutants were more rapid than for wild-type IGF1R; this was most apparent for the Y1135F mutant. Substrate phosphorylation studies on the unphosphorylated forms of IGF1R confirmed that the value of Vmax for Y1135F was elevated relative to wild-type IGF1R, consistent with a disruption of an autoinhibitory interaction. In contrast, activity measurements on the fully phosphorylated enzymes indicated that kcat/Km values were lowered relative to wild-type IGF1R; this effect was most dramatic for Y1136F. We confirmed these findings using limited proteolysis and tryptophan fluorescence experiments. The results demonstrate that Tyr1135 plays a particularly important role in stabilizing the autoinhibited conformation of the activation loop, while Tyr1136 plays the key role in stabilizing the open, activated conformation of IGF1R.  相似文献   

9.
Vitamin D metabolites stimulate creatine kinase BB activity in organs of vitamin D-deficient rats. In epiphyses of long bones, creatine kinase BB activity increases 2.6-fold 24 h after injection of 24R,25-dihydroxycholecalciferol but not of 1 alpha,25-dihydroxycholecalciferol. Contrariwise, 1 alpha,25-dihydroxycholecalciferol, but not 24R,25-dihydroxycholecalciferol, increases creatine kinase BB activity in diaphyses and in kidney. Neither metabolite affects creatine kinase activity in duodenal mucosa.  相似文献   

10.
Alkylacylglycerols are synthesized when choline-phospholipids are degraded by a phospholipase C. This class of compounds has been shown to have biological activities; however, the mechanism of action is unknown. A series of alkyl-linked diglycerides were synthesized and tested for activity in an in vitro assay for protein kinase C. When protein kinase C activity was stimulated with the synthetic diacylglyceride analog 1-oleoyl-2-acetyl-sn-glycerol, the addition of alkyl glycerides caused a concentration-dependent inhibition of protein kinase C activity. Comparison of the protein kinase C inhibition by this series of 1-O-alkyl-2-acyl analogs revealed that both saturated and unsaturated long-chain groups in position 1 were effective and that dietherglycerols with short-chain moieties in position 2 were also effective. It is concluded from these studies that the biological activity of alkyl-linked glycerides may be expressed through protein kinase C inhibition.  相似文献   

11.
The insulin-like growth factor receptor (IGF-1R) is a receptor tyrosine kinase (RTK) involved in all stages of the development and propagation of breast and other cancers. The inhibition of IGF-1R by small molecules remains a promising strategy to treat cancer. Herein, we explore SAR around previously characterized lead compound (1), which is an aryl-heteroaryl urea (AHU) consisting of 4-aminoquinaldine and a substituted aromatic ring system. A library of novel AHU compounds was prepared based on derivatives of the 4-aminoquinoline heterocycle (including various 2-substituted derivatives, and naphthyridines). The compounds were screened for in vitro inhibitory activity against IGF-1R, and several compounds with improved activity (3–5 μM) were identified. Furthermore, a computational docking study was performed, which identifies a fairly consistent lowest energy mode of binding for the more-active set of inhibitors in this series, while the less-active inhibitors do not adopt a consistent mode of binding.  相似文献   

12.
The Raf-1 proto-oncogene protein kinase can be phosphorylated and activated after stimulation of cells with insulin and a variety of other growth factors and mitogens. We recently presented evidence that insulin and certain other growth factors activated one or more Raf-1 kinase kinase activities (Lee, R.M., Rapp, U. R., and Blackshear, P.J. (1991) J. Biol. Chem. 266, 10351-10357). In the present study, four peaks of Raf-1 kinase kinase activity were identified after anion-exchange chromatography of cell lysates, and two of these were activated by insulin. Further chromatographic characterization of these two peaks of insulin-activated kinase activity indicated that they contained three apparently distinct kinase activities. Two of these activities comigrated with immunoreactive extracellular signal-regulated kinases (ERK) 1 and 2 (mitogen-activated protein kinase) through three different chromatographic separations. Both ERK1 and ERK2 phosphorylated Raf-1 with reasonably high affinity (Km for ERK1 = 90 nM; Km for ERK2 = 120 nM), and produced similar, complex phosphopeptide maps; both kinases also phosphorylated myelin basic protein. The third kinase activity also phosphorylated Raf-1 and myelin basic protein but did not comigrate exactly with either immunoreactive ERK1 or ERK2. We conclude that two and possibly three insulin-activated Raf-1 kinase kinases are members of the ERK family.  相似文献   

13.
F. Estruch  M. A. Treitel  X. Yang    M. Carlson 《Genetics》1992,132(3):639-650
The SNF1 protein kinase is required for expression of glucose-repressed genes in response to glucose deprivation. The SNF4 protein is physically associated with SNF1 and positively affects the kinase activity. We report here the characterization of a dominant mutation, SNF1-G53R, that was isolated as a suppressor of the requirement for SNF4. The mutant SNF1-G53R protein is still responsive to SNF4 but has greatly elevated kinase activity in immune complex assays; in contrast, the activity is wild type in a protein blot assay. Deletion of the region N-terminal to the kinase domain (codons 5-52) reduces kinase activity in vitro, but the mutant SNF1-delta N kinase is still dependent on SNF4. The N terminus is not required for the regulatory response to glucose. In gel filtration chromatography, the SNF1, SNF1-G53R and SNF1-delta N protein showed different elution profiles, consistent with differential formation of high molecular weight complexes. Taken together, the results suggest that the N terminus positively affects the function of the SNF1 kinase and may be involved in interaction with a positive effector other than SNF4. We also showed that the conserved threonine residue 210 in subdomain VIII, which is a phosphorylation site in other kinases, is essential for SNF1 activity. Finally, we present evidence that when the C terminus is deleted, overexpression of the SNF1 kinase domain is deleterious to the cell.  相似文献   

14.
In a previous characterization of the ABCA subfamily of the ATP-binding cassette (ABC) transporters, we identified potential protein kinase 2 (CK2) phosphorylation sites, which are conserved in eukaryotic and prokaryotic members of the ABCA transporters. These phosphorylation residues are located in the conserved cytoplamic R1 and R2 domains, downstream of the nucleotide binding domains NBD1 and NBD2. To study the possible regulation of the ABCA1 transporter by CK2, we expressed the recombinant cytoplasmic domains of ABCA1, NBD1+R1 and NBD2+R2. We demonstrated that in vitro ABCA1 NBD1+R1, and not NBD2+R2, is phosphorylated by CK2, and we identified Thr-1242, Thr-1243, and Ser-1255 as the phosphorylated residues in the R1 domain by mass spectrometry. We further investigated the functional significance of the threonine and serine phosphorylation sites in NBD1 by site-directed mutagenesis of the entire ABCA1 followed by transfection into Hek-293 Tet-Off cells. The ABCA1 flippase activity, apolipoprotein AI and AII binding, and cellular phospholipid and cholesterol efflux were enhanced by mutations preventing CK2 phosphorylation of the threonine and serine residues. This was confirmed by the effect of specific protein kinase CK2 inhibitors upon the activity of wild type and mutant ABCA1 in transfected Hek-293 Tet-Off cells. The activities of the mutants mimicking threonine phosphorylation were close to that of wild type ABCA1. Our data, therefore, suggest that besides protein kinase A and C, protein kinase CK2 might play an important role in vivo in regulating the function and transport activity of ABCA1 and possibly of other members of the ABCA subfamily.  相似文献   

15.
Mouse NIH 3T3 fibroblasts transfected with human colony stimulating factor-1 receptor produced diacylglycerol in response to CSF1 and this correlated with elevated phosphatidylcholine hydrolyzing activity measured in an in vitro assay. Treatment of cells with the isoflavone derivative genistein attenuated PC hydrolysis in vitro suggesting a role for CSF1R tyrosine kinase activity. A CSF1R mutant lacking 67 amino acids of the kinase insert domain, which may affect the association of receptor with certain substrates, stimulated PC hydrolysis in response to CSF1. Coupling to PC hydrolysis is likely a general property of CSF1R and the kinase insert domain is dispensable for this activity.  相似文献   

16.
To study the peripheral effects of melanocortin on fuel homeostasis in skeletal muscle, we assessed palmitate oxidation and AMP kinase activity in alpha-melanocyte-stimulating hormone (alpha-MSH)-treated muscle cells. After alpha-MSH treatment, carnitine palmitoyltransferase-1 and fatty acid oxidation (FAO) increased in a dose-dependent manner. A strong melanocortin agonist, NDP-MSH, also stimulated FAO in primary culture muscle cells and C2C12 cells. However, [Glu6]alpha-MSH-ND, which has ample MC4R and MC3R agonistic activity, stimulated FAO only at high concentrations (10(-5) M). JKC-363, a selective MC4R antagonist, did not suppress alpha-MSH-induced FAO. Meanwhile, SHU9119, which has both antagonistic activity on MC3R and MC4R and agonistic activity on both MC1R and MC5R, increased the effect of alpha-MSH on FAO in both C2C12 and primary muscle cells. Small interference RNA against MC5R suppressed the alpha-MSH-induced FAO effectively. cAMP analogues mimicked the effect of alpha-MSH on FAO, and the effects of both alpha-MSH and cAMP analogue-mediated FAO were antagonized by a protein kinase A inhibitor (H89) and a cAMP antagonist ((Rp)-cAMP). Acetyl-CoA carboxylase activity was suppressed by alpha-MSH and cAMP analogues by phosphorylation through AMP-activated protein kinase activation in C2C12 cells. Taken together, these results suggest that alpha-MSH increases FAO in skeletal muscle, in which MC5R may play a major role. Furthermore, these results suggest that alpha-MSH-induced FAO involves cAMP-protein kinase A-mediated AMP-activated protein kinase activation.  相似文献   

17.
Herpes simplex virus (HSV) ribonucleotide reductase is formed by the association of two distinct dimeric subunits, R1 and R2. Attempts to purify either the HSV holoenzyme or its R1 subunit in their active form have been unsuccessful until now. The C terminus of the R2 protein being involved in the association with R1, the synthetic nonapeptide corresponding to this terminus, impedes the formation of the holoenzyme by competing with R2 for a critical site on R1. Based upon these observations, we developed an affinity chromatographic procedure to purify the R1 protein from HSV-1-infected baby hamster kidney cells. Specific binding of R1 to an affinity column made by linking the peptide HSV R2-(326-337) to Affi-Gel 10, followed by specific elution with an excess of an analogous peptide exhibiting a higher affinity for R1 yielded, in a single step, highly purified R1 protein. The purified R1 preparations contained approximately 95% of intact R1, the remaining 5% consisting of two R1 copurifying proteolytic breakdown products. The purified R1 protein exhibited a high reductase specific activity when mixed with an excess of the R2 subunit. Moreover, in vitro kinase assays revealed that the purified R1 protein of HSV-1 possesses an autophosphorylating activity also able to phosphorylate alpha-casein and histone II-S. The intrinsic protein kinase activity of HSV R1 is associated with its unique N-terminal domain which is absent from all other reductase subunits 1 and contains consensus motifs found in Ser/Thr protein kinases. A preliminary characterization of the kinase activity of the R1 protein of HSV-1 ribonucleotide reductase is presented.  相似文献   

18.
Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. Inhibitors of this receptor are believed to provide a new target in cancer therapy. We previously reported an isoquinolinedione series of IGF-1R inhibitors. Now we have identified a series of 3-cyanoquinoline compounds that are low nanomolar inhibitors of IGF-1R. The strategies, synthesis, and SAR behind the cyanoquinoline scaffold will be discussed.  相似文献   

19.
Interruption of TGFβ signaling through inhibition of the TGFβR1 kinase domain may prove to have beneficial effect in both fibrotic and oncological diseases. Herein we describe the SAR of a novel series of TGFβR1 kinase inhibitors containing a pyrazolone core. Most TGFβR1 kinase inhibitors described to date contain a core five-membered ring bearing N as H-bond acceptor. Described herein is a novel strategy to replace the core structure with pyrazolone ring, in which the carbonyl group is designed as an H-bond acceptor to interact with catalytic Lys 232.  相似文献   

20.
Colony-stimulating factor-1 (CSF1) is a cell lineage-specific hemopoietin required for the growth, differentiation, and survival of macrophages and their precursors. The human CSF1 receptor (CSF1R) is a 150-kDa transmembrane glycoprotein whose cytoplasmic tyrosine kinase domain is split by a kinase insert (KI) region of approximately 70 amino acids. We tested the ability of CSF1R KI domain deletion mutants to stimulate phosphatidylinositol-3-kinase (PtdIns-3-kinase), an enzyme whose activity is augmented by tyrosine kinase oncogenes and receptor tyrosine kinases, and to support mitogenesis in transfected cells. Receptor immunoprecipitates from CSF1-stimulated cells contained greater than 5-fold more PtdIns-3-kinase activity compared to nonstimulated cells. High performance liquid chromatography analysis of the PtdIns-3-kinase product scraped from thin layer chromatography plates indicated that PtdIns-3-P was produced. CSF1R KI domain deletion mutants retained tyrosine kinase activity in vitro. Receptor immunoprecipitates of two partially overlapping 28 and 30 amino acid KI deletion mutants of CSF1R retained some PtdIns-3-kinase activity, in contrast to immunoprecipitates of CSF1R lacking 67 amino acids of the KI domain. Each deletion mutant stimulated CSF1-dependent DNA synthesis in transfected cells at much reduced levels compared to wild-type receptor expressing cells. These data suggest a role for the CSF1R KI domain in PtdIns-3-kinase association and for CSF1-induced thymidine incorporation into DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号