首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(4):401-411
PML-RARα oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-α (RARα) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RARα degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RARα degradation. Inhibition of autophagy by short hairpin (sh) RNA that target essential autophagy genes such as Atg1, Atg5 and PI3KC3 and by autophagy inhibitors (e.g. 3-methyladenine), blocked PML-RARα degradation and subsequently granulocytic differentiation of human myeloid leukemic cells. In contrast, rapamycin, the mTOR kinase inhibitor, enhanced autophagy and promoted ATRA-induced PML-RARα degradation and myeloid cell differentiation. Moreover, PML-RARα co-immunoprecipitated with ubiquitin-binding adaptor protein p62/SQSTM1, which is degraded through autophagy. Furthermore, knockdown of p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation and myeloid cell differentiation. The identification of PML-RARα as a target of autophagy provides new insight into the mechanism of action of ATRA and its specificity for APL.  相似文献   

2.
Wang Z  Cao L  Kang R  Yang M  Liu L  Zhao Y  Yu Y  Xie M  Yin X  Livesey KM  Tang D 《Autophagy》2011,7(4):401-411
PML-RARα oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-α (RARα) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RARα degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RARα degradation. Inhibition of autophagy by short hairpin (sh) RNA that target essential autophagy genes such as Atg1, Atg5 and PI3KC3 and by autophagy inhibitors (e.g. 3-methyladenine), blocked PML-RARα degradation and subsequently granulocytic differentiation of human myeloid leukemic cells. In contrast, rapamycin, the mTOR kinase inhibitor, enhanced autophagy and promoted ATRA-induced PML-RARα degradation and myeloid cell differentiation. Moreover, PML-RARα co-immunoprecipitated with ubiquitin-binding adaptor protein p62/SQSTM1, which is degraded through autophagy. Furthermore, knockdown of p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation and myeloid cell differentiation. The identification of PML-RARα as a target of autophagy provides new insight into the mechanism of action of ATRA and its specificity for APL.  相似文献   

3.
Acute promyelocytic leukemia (APL) results from a reciprocal translocation that fuses the gene for the PML tumor suppressor to that encoding the retinoic acid receptor alpha (RARα). The resulting PML-RARα oncogene product interferes with multiple regulatory pathways associated with myeloid differentiation, including normal PML and RARα functions. The standard treatment for APL includes anthracycline-based chemotherapeutic agents plus the RARα agonist all-trans retinoic acid (ATRA). Relapse, which is often accompanied by ATRA resistance, occurs in an appreciable frequency of treated patients. One potential mechanism suggested by model experiments featuring the selection of ATRA-resistant APL cell lines involves ATRA-resistant versions of the PML-RARα oncogene, where the relevant mutations localize to the RARα ligand-binding domain (LBD). Such mutations may act by compromising agonist binding, but other mechanisms are possible. Here, we studied the molecular consequence of ATRA resistance by use of circular dichroism, protease resistance, and fluorescence anisotropy assays employing peptides derived from the NCOR nuclear corepressor and the ACTR nuclear coactivator. The consequences of the mutations on global structure and cofactor interaction functions were assessed quantitatively, providing insights into the basis of agonist resistance. Attenuated cofactor switching and increased protease resistance represent features of the LBDs of ATRA-resistant PML-RARα, and these properties may be recapitulated in the full-length oncoproteins.  相似文献   

4.
5.
6.
H de Thé  C Lavau  A Marchio  C Chomienne  L Degos  A Dejean 《Cell》1991,66(4):675-684
We have previously shown that the t(15;17) translocation specifically associated with acute promyelocytic leukemia (APL) fuses the retinoic acid receptor alpha (RAR alpha) locus to an as yet unknown gene, initially called myl and now renamed PML. We report here that this gene product contains a novel zinc finger motif common to several DNA-binding proteins. The PML-RAR alpha mRNA encodes a predicted 106 kd chimeric protein containing most of the PML sequences fused to a large part of RAR alpha, including its DNA- and hormone-binding domains. In transient expression assays, the hybrid protein exhibits altered transactivating properties if compared with the wild-type RAR alpha progenitor. Identical PML-RAR alpha fusion points are found in several patients. These observations suggest that in APL, the t(15;17) translocation generates an RAR mutant that could contribute to leukemogenesis through interference with promyelocytic differentiation.  相似文献   

7.
8.
9.
The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply a new combination therapy based on ATRA. Therefore, research strategies to further sensitize cells to retinoids are urgently needed. In this study, we showed that Dihydromyricetin (DMY), a 2,3-dihydroflavonol compound, exhibited a strong synergy with ATRA to promote APL NB4 cell differentiation. We observed that DMY sensitized the NB4 cells to ATRA-induced cell growth inhibition, CD11b expression, NBT reduction and myeloid regulator expression. PML-RARα might not be essential for DMY-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of p38-STAT1 signaling pathway. Taken together, our study is the first to evaluate the synergy of DMY and ATRA in NB4 cell differentiation and to assess new opportunities for the combination of DMY and ATRA as a promising approach for future differentiation therapy.  相似文献   

10.
11.
12.
In acute promyelocytic leukemia (APL) cells harboring the promyelocytic leukemia retinoic acid receptor alpha (PML-RARalpha) chimeric protein, retinoic acid (RA)-induced differentiation is triggered through a PML-RARalpha signaling resulting in activation of critical target genes. Induced differentiation of APL cells is always preceded by withdrawal from the cell cycle and commitment events leading to terminal differentiation. Here we have identified the human ankyrin repeat-containing protein with a suppressor of cytokine signaling box-2 (ASB-2) cDNA, as a novel RA-induced gene in APL cells. PML-RARalpha strongly enhanced RA-induced ASB-2 mRNA expression. In myeloid leukemia cells, ASB-2 expression induced growth inhibition and chromatin condensation recapitulating early events critical to RA-induced differentiation of APL cells.  相似文献   

13.
Retinoic acid (RA) suppresses alpha 2(I) collagen expression in hepatic stellate cells through the binding of retinoic acid receptor beta (RAR beta) and retinoid X receptor alpha (RXR alpha) to RA response elements (RAREs) in the alpha 2(I) collagen promoter. This study determined the influence of coactivators and corepressors to RAR beta and RXR alpha on the regulation of the alpha 2(I) collagen promoter. The coactivators, steroid receptor coactivator-1 (SRC-1) and growth hormone receptor interacting protein-1 (GRIP-1), enhanced, while the nuclear receptor corepressor (N-CoR) abolished the inhibitory effect of RAR beta and RXR alpha on the promoter activity. In the presence of RA, the coactivators SRC-1 and GRIP-1 formed complexes with RAR beta and RXR alpha which are bound to an oligonucleotide specifying a RARE site in the promoter. In conclusion, this study shows that in the presence of retinoic acid, the coactivators SRC-1 and GRIP-1 augment, while the corepressor N-CoR abolishes, the suppressive effects of RAR beta and RXR alpha on alpha 2(I) collagen promoter activity.  相似文献   

14.
15.
16.
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL's hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.  相似文献   

17.
Although retinoic acid receptor alpha (RARalpha) agonists induce the maturation of t(15;17) acute promyelocytic leukemia (APL) cells, drug treatment also selects leukemic blasts expressing PML-RARalpha fusion proteins with mutated ligand-binding domains that no longer respond to all-trans retinoic acid (ATRA). Here we report a novel RARalpha-independent signaling pathway that induces maturation of both ATRA-sensitive and ATRA-resistant APL NB4 cells, and does not invoke the ligand-induced alteration of PML-RARalpha signaling, stability or compartmentalization. This response involves a cross-talk between RXR agonists and protein kinase A signaling. Our results indicate the existence of a separate RXR-dependent maturation pathway that can be activated in the absence of known ligands for RXR heterodimerization partners.  相似文献   

18.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号