共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats 总被引:14,自引:0,他引:14
Plant virus-based vectors carrying sequences homologous to endogenous genes trigger silencing through a homology-dependent RNA degradation mechanism. This phenomenon, called virus-induced gene silencing (VIGS), has potential as a powerful reverse-genetics tool in functional genomic programmes through transient, loss-of-function screens. Here, we describe a method to enhance the robustness of the VIGS phenotype by increasing the level of dsRNA molecule production, a critical step in the VIGS response. Incorporation of 40-60 base direct inverted-repeats into a plant viral vector generates RNA molecules that form dsRNA hairpins. A tobacco mosaic virus (TMV)-based vector carrying such inverted-repeats, homologous to a green fluorescent protein (gfp) transgene or an endogenous phytoene desaturase (pds) gene, generated a stronger and more pervasive VIGS phenotype than constructs carrying corresponding cDNA fragments in sense or antisense orientation. Real-time RT-PCR indicated that there was up to a threefold reduction in target mRNA accumulation in the tissues where VIGS was triggered by constructs carrying inverted-repeats compared to those where it was triggered by sense or antisense constructs. Moreover, an enhanced VIGS pds phenotype was observed using a different vector, based on barley stripe mosaic virus, in the monocotyledonous host barley. This demonstrates that VIGS can be significantly improved through the inclusion of small inverted-repeats in plant virus-based vectors, generating a more robust loss-of-function phenotype. This suggests that dsRNA formation can be a limiting factor in the VIGS phenomenon. 相似文献
2.
Virus-induced gene silencing (VIGS) is a plant RNA-silencing technique that uses viral vectors carrying a fragment of a gene of interest to generate double-stranded RNA, which initiates the silencing of the target gene. Several viral vectors have been developed for VIGS and they have been successfully used in reverse genetics studies of a variety of processes occurring in plants. This approach has not been widely adopted for the model dicotyledonous species Arabidopsis (Arabidopsis thaliana), possibly because, until now, there has been no easy protocol for effective VIGS in this species. Here, we show that a widely used tobacco rattle virus-based VIGS vector can be used for silencing genes in Arabidopsis ecotype Columbia-0. The protocol involves agroinfiltration of VIGS vectors carrying fragments of genes of interest into seedlings at the two- to three-leaf stage and requires minimal modification of existing protocols for VIGS with tobacco rattle virus vectors in other species like Nicotiana benthamiana and tomato (Lycopersicon esculentum). The method described here gives efficient silencing in Arabidopsis ecotype Columbia-0. We show that VIGS can be used to silence genes involved in general metabolism and defense and it is also effective at knocking down expression of highly expressed transgenes. A marker system to monitor the progress and efficiency of VIGS is also described. 相似文献
3.
4.
Virus-induced gene silencing in tomato 总被引:40,自引:0,他引:40
Liu Y Schiff M Dinesh-Kumar SP 《The Plant journal : for cell and molecular biology》2002,31(6):777-786
We have previously demonstrated that a tobacco rattle virus (TRV)-based vector can be used in virus-induced gene silencing (VIGS) to study gene function in Nicotiana benthamiana. Here we show that recombinant TRV infects tomato plants and induces efficient gene silencing. Using this system, we suppressed the PDS, CTR1 and CTR2 genes in tomato. Suppression of CTR1 led to a constitutive ethylene response phenotype and up-regulation of an ethylene response gene, CHITINASE B. This phenotype is similar to Arabidopsis ctr1 mutant plants. We have constructed a modified TRV vector based on the GATEWAY recombination system, allowing restriction- and ligation-free cloning. Our results show that tomato expressed sequence tags (ESTs) can easily be cloned into this modified vector using a single set of primers. Using this vector, we have silenced RbcS and an endogenous gene homologous to the tomato EST cLED3L14. In the future, this modified vector system will facilitate large-scale functional analysis of tomato ESTs. 相似文献
5.
Jatropha curcas L. is a small, woody tree of the Euphorbiaceae family. This plant can grow on marginal land in the tropical and subtropical regions and produces seeds containing up to 30% oil. Several Asian countries have selected Jatropha for large scale planting as a biodiesel feedstock. Nevertheless, Jatropha also possesses several undesirable traits that may limit its wide adoption. An improved understanding of plant development and the regulation of fatty acid (FA) and triacylglyceride biosynthesis in Jatropha is particularly facilitative for the development of elite crops. Here, we show that a tobacco rattle virus (TRV) vector can trigger virus-induced gene silencing (VIGS) in Jatropha. Our optimized method produced robust and reliable gene silencing in plants agroinoculated with recombinant TRV harbouring Jatropha gene sequences. We used VIGS to investigate possible functions of 13 Jatropha genes of several functional categories, including FA biosynthesis, developmental regulation and toxin biosynthesis, etc. Based on the effects of VIGS on the FA composition of newly emerged leaves, we determined the function of several genes implicated in FA biosynthesis. Moreover, VIGS was able to discriminate independent functions of related gene family members. Our results show that VIGS can be used for high-throughput screening of Jatropha genes whose functions can be assayed in leaves. 相似文献
6.
7.
Metzlaff M 《Biological chemistry》2002,383(10):1483-1489
In the 'RNA world' hypothesis it is postulated that RNA was the first genetic molecule. Recent discoveries in gene silencing research on plants, fungi and animals show that RNA indeed plays a key role not only in controlling invading nucleic acids, like viruses and transposable elements, but also in regulating the expression of transgenes and endogenous genes. Double-stranded RNAs were identified to be the triggering structures for the induction of a specific and highly efficient RNA silencing system, in which enzyme complexes, like Dicer and RISC, facilitate as 'molecular machines' the processing of dsRNA into characteristic small RNA species. RNA silencing can be transmitted rapidly from silenced to non-silenced cells by short and long distance signaling. There is evidence that at least one component of the signal is a specific, degradation-resistant RNA. 相似文献
8.
Virus-induced gene silencing in tomato fruit 总被引:16,自引:0,他引:16
Fu DQ Zhu BZ Zhu HL Jiang WB Luo YB 《The Plant journal : for cell and molecular biology》2005,43(2):299-308
Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants. Here we report that either by syringe-infiltrating the tobacco rattle virus (TRV)-vector into the surface, stem or carpopodium of a tomato fruit attached to the plant or by vacuum-infiltrating into a tomato fruit detached from the plant, TRV can efficiently spread and replicate in the tomato fruit. Although VIGS can be performed in tomato fruit by all of the means mentioned above, the most effective method is to inject the TRV-vector into the carpopodium of young fruit attached to the plant about 10 days after pollination. Several reporter genes related to ethylene responses and fruit ripening, including LeCTR1 and LeEILs genes, were also successfully silenced by this method during fruit development. In addition, we found that the silencing of the LeEIN2 gene results in the suppression of tomato fruit ripening. The results of our study indicate that the application of VIGS techniques by the described methods can be successfully applied to tomato fruit and is a valuable tool for studying functions of the relevant genes during fruit developing. 相似文献
9.
10.
11.
12.
13.
Bruun-Rasmussen M Madsen CT Jessing S Albrechtsen M 《Molecular plant-microbe interactions : MPMI》2007,20(11):1323-1331
14.
Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing 总被引:5,自引:1,他引:5
Nagamatsu A Masuta C Senda M Matsuura H Kasai A Hong JS Kitamura K Abe J Kanazawa A 《Plant biotechnology journal》2007,5(6):778-790
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase ( CHS ) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase ( F3'H ) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes. 相似文献
15.
Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton 总被引:3,自引:0,他引:3
A silencing vector for cotton (Gossypium hirsutum) was developed from the geminivirus Cotton leaf crumple virus (CLCrV). The CLCrV coat protein gene was replaced by up to 500 bp of DNA homologous to one of two endogenous genes, the magnesium chelatase subunit I gene (ChlI) or the phytoene desaturase gene (PDS). Cotyledons of cotton cultivar 'Deltapine 5415' bombarded with the modified viral vectors manifested chlorosis due to silencing of either ChlI or PDS in approximately 70% of inoculated plants after 2 to 3 weeks. Use of the green fluorescence protein gene showed that replication of viral DNA was restricted to vascular tissue and that the viral vector could transmit to leaves, roots, and the ovule integument from which fibers originate. Temperature had profound effects on vector DNA accumulation and the spread of endogenous gene silencing. Consistent with reports that silencing against viruses increases at higher temperatures, plants grown at a 30 degrees C/26 degrees C day/night cycle had a greater than 10-fold reduction in viral DNA accumulation compared to plants grown at 22 degrees C/18 degrees C. However, endogenous gene silencing decreased at 30 degrees C/26 degrees C. There was an approximately 7 d delay in the onset of gene silencing at 22 degrees C/18 degrees C, but silencing was extensive and persisted throughout the life of the plant. The extent of silencing in new growth could be increased or decreased by changing temperature regimes at various times following the onset of silencing. Our experiments establish the use of the CLCrV silencing vector to study gene function in cotton and show that temperature can have a major impact on the extent of geminivirus-induced gene silencing. 相似文献
16.
Barley stripe mosaic virus-induced gene silencing in a monocot plant 总被引:35,自引:0,他引:35
Holzberg S Brosio P Gross C Pogue GP 《The Plant journal : for cell and molecular biology》2002,30(3):315-327
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species. 相似文献
17.
Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing 总被引:1,自引:0,他引:1
Anand A Vaghchhipawala Z Ryu CM Kang L Wang K del-Pozo O Martin GB Mysore KS 《Molecular plant-microbe interactions : MPMI》2007,20(1):41-52
Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches. 相似文献
18.
Fast forward genetics based on virus-induced gene silencing. 总被引:21,自引:0,他引:21
D C Baulcombe 《Current opinion in plant biology》1999,2(2):109-113
19.
Kotaro Yamamoto Dagny Grzech Konstantinos Koudounas Emily Amor Stander Lorenzo Caputi Tetsuro Mimura Vincent Courdavault Sarah E. OConnor 《Plant physiology》2021,187(2):846
Specialized metabolites are chemically complex small molecules with a myriad of biological functions. To investigate plant-specialized metabolite biosynthesis more effectively, we developed an improved method for virus-induced gene silencing (VIGS). We designed a plasmid that incorporates fragments of both the target gene and knockdown marker gene (phytoene desaturase, PDS), which identifies tissues that have been successfully silenced in planta. To demonstrate the utility of this method, we used the terpenoid indole alkaloid (TIA) pathway in Madagascar periwinkle (Catharanthus roseus) as a model system. Catharanthus roseus is a medicinal plant well known for producing many bioactive compounds, such as vinblastine and vincristine. Our VIGS method enabled the discovery of a previously unknown biosynthetic enzyme, serpentine synthase (SS). This enzyme is a cytochrome P450 (CYP) that produces the β-carboline alkaloids serpentine and alstonine, compounds with strong blue autofluorescence and potential pharmacological activity. The discovery of this enzyme highlights the complexity of TIA biosynthesis and demonstrates the utility of this improved VIGS method for discovering unidentified metabolic enzymes in plants.An improved virus-induced gene silencing approach led to the discovery of the alkaloid biosynthetic enzyme serpentine synthase. 相似文献
20.
In angiosperms, auxin phytohormones play a crucial regulatory role in fruit initiation. The expression of auxin biosynthesis genes in ovules and placenta results in uncoupling of tomato (Solanum lycopersicum) fruit development from fertilization with production of parthenocarpic fruits. We have identified two newly described genes, named Aucsia genes, which are differentially expressed in auxin-synthesis (DefH9-iaaM) parthenocarpic tomato flower buds. The two tomato Aucsia genes encode 53-amino-acid-long peptides. We show, by RNA interference-mediated gene suppression, that Aucsia genes are involved in both reproductive and vegetative plant development. Aucsia-silenced tomato plants exhibited auxin-related phenotypes such as parthenocarpic fruit development, leaf fusions, and reflexed leaves. Auxin-induced rhizogenesis in cotyledon explants and polar auxin transport in roots were reduced in Aucsia-silenced plants compared with wild-type plants. In addition, Aucsia-silenced plants showed an increased sensitivity to 1-naphthylphthalamic acid, an inhibitor of polar auxin transport. We further prove that total indole-3-acetic acid content was increased in preanthesis Aucsia-silenced flower buds. Thus, the data presented demonstrate that Aucsia genes encode a novel family of plant peptides that control fruit initiation and affect other auxin-related biological processes in tomato. Aucsia homologous genes are present in both chlorophytes and streptophytes, and the encoded peptides are distinguished by a 16-amino-acid-long (PYSGXSTLALVARXSA) AUCSIA motif, a lysine-rich carboxyl-terminal region, and a conserved tyrosine-based endocytic sorting motif. 相似文献