首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have prepared a series of cathepsin K inhibitors bearing the keto-1,3,4-oxadiazole warhead capable of forming a hemithioketal complex with the target enzyme. By modifying binding moieties at the P1, P2, and prime side positions of the inhibitors, we have achieved selectivity over cathepsins B, L, and S, and have achieved sub-nanomolar potency against cathepsin K. This series thus represents a promising chemotype that could be used in diseases implicated by imbalances in cathepsin K activity such as osteoporosis.  相似文献   

2.
Highly potent and selective 4-amidofuran-3-one inhibitors of cathepsin S are described. The synthesis and structure–activity relationship of a series of inhibitors with a sulfonamide moiety in the P3 position is presented. Several members of the series show sub-nanomolar inhibition of the target enzyme as well as an excellent selectivity profile and good cellular potency. Molecular modeling of the most interesting inhibitors describes interactions in the extended S3 pocket and explains the observed selectivity towards cathepsin K.  相似文献   

3.
The synthesis and biological activity of a series of aldehyde inhibitors of cathepsin K are reported. Exploration of the properties of the S(1) subsite with a series of alpha-amino aldehyde derivatives substituted at the P(1) position afforded compounds with cathepsin K IC(50)s between 52 microM and 15 nM.  相似文献   

4.
Nonpeptidic, selective, and potent cathepsin S inhibitors were derived from an in-house pyrrolopyrimidine cathepsin K inhibitor by modification of the P2 and P3 moieties. The pyrrolopyrimidine-based inhibitors show nanomolar inhibition of cathepsin S with over 100-fold selectivity against other cysteine proteases, including cathepsin K and L. Some of the inhibitors showed cellular activities in mouse splenocytes as well as oral bioavailabilities in rats.  相似文献   

5.
A series of azepanone inhibitors of cathepsin S is described. Selectivity over both cathepsin K and cathepsin L was achieved by varying the P2 substituent. Ultimately, a balanced potency and selectivity profile was achieved in compound 39 possessing a 1-methylcyclohexyl alanine at P2 and nicotinamide as the P′ substituent. The cellular potency of selected analogs is also described.  相似文献   

6.
Cathepsin K is known to play an important role in bone resorption, and it has the P2 specificity for proline. Rat cathepsin K has 88% identity with the human enzyme. However, it has been reported that its enzymatic activity for a Cbz-Leu-Arg-MCA substrate is lower than that of human cathepsin K, and that the rat enzyme is not well inhibited by human cathepsin K inhibitors. For this study, we prepared recombinant enzyme to investigate the substrate specificity of rat cathepsin K. Cleavage experiments using the fragment of type I collagen and peptidic libraries demonstrated that rat cathepsin K preferentially hydrolyses the substrates at the P2 Hyp position. Comparison of the S2 site between rat and human cathepsin K sequences indicated that two S2 residues at Ser134 and Val160 in rat are varied to Ala and Leu, respectively, in the human enzyme. Cleavage experiments using two single mutants, S134A and V160L, and one double mutant, S134A/V160L, of rat cathepsin K showed that all the rat mutants lost the P2 Hyp specificity. The information obtained from our comparative studies on rat and human cathepsin K should make a significant impact on developing specific inhibitors of human cathepsin K since rat is usually used as test species.  相似文献   

7.
A library of cathepsin S inhibitors of the dipeptide nitrile chemotype, bearing a bioisosteric sulfonamide moiety, was synthesized. Kinetic investigations were performed at four human cysteine proteases, i.e. cathepsins S, B, K and L. Compound 12 with a terminal 3-biphenyl sulfonamide substituent was the most potent (Ki = 4.02 nM; selectivity ratio cathepsin S/K = 5.8; S/L = 67) and 24 with a 4′-fluoro-4-biphenyl sulfonamide substituent the most selective cathepsin S inhibitor (Ki = 35.5 nM; selectivity ratio cathepsin S/K = 57; S/L = 31). In silico design and biochemical evaluation emphasized the impact of the sulfonamide linkage on selectivity and a possible switch of P2 and P3 substituents with respect to the occupation of the corresponding binding sites of cathepsin S.  相似文献   

8.
Cathepsin S, a lysosomal cysteine protease of the papain superfamily, has been implicated in the preparation of MHC class II alphabeta-heterodimers for antigen presentation to CD4+ T lymphocytes and is considered a potential target for autoimmune-disease therapy. Selective inhibition of this enzyme may be therapeutically useful for attenuating the hyperimmune responses in a number of disorders. We determined the three-dimensional crystal structures of human cathepsin S in complex with potent covalent inhibitors, the aldehyde inhibitor 4-morpholinecarbonyl-Phe-(S-benzyl)Cys-Psi(CH=O), and the vinyl sulfone irreversible inhibitor 4-morpholinecarbonyl-Leu-Hph-Psi(CH=CH-SO(2)-phenyl) at resolutions of 1.8 and 2.0 A, respectively. In the structure of the cathepsin S-aldehyde complex, the tetrahedral thiohemiacetal adduct favors the S-configuration, in which the oxygen atom interacts with the imidazole group of the active site His164 rather than with the oxyanion hole. The present structures provide a detailed map of noncovalent intermolecular interactions established in the substrate-binding subsites S3 to S1' of cathepsin S. In the S2 pocket, which is the binding affinity hot spot of cathepsin S, the Phe211 side chain can assume two stable conformations that accommodate either the P2-Leu or a bulkier P2-Phe side chain. This structural plasticity of the S2 pocket in cathepsin S explains the selective inhibition of cathepsin S over cathepsin K afforded by inhibitors with the P2-Phe side chain. Comparison with the structures of cathepsins K, V, and L allows delineation of local intermolecular contacts that are unique to cathepsin S.  相似文献   

9.
The synthesis of a series of highly potent and selective inhibitors of cathepsin K based on the 3,4-disubstituted azetidin-2-one warhead is reported. A high degree of potency and selectivity was achieved by introducing a basic nitrogen into the distal part of the P3 element of the molecule. Data from kinetic and mass spectrometry experiments are consistent with the interpretation that compounds of this series transiently acylate the sulfhydrile of cathepsin K.  相似文献   

10.
Peptidic, non-covalent inhibitors of lysosomal cysteine protease cathepsin S (1 and 2) were investigated due to low oral bioavailability, leading to an improved series of peptidomimetic inhibitors. Utilizing phenyl succinamides as the P2 residue increased the oral exposure of this lead series of compounds, while retaining selective inhibition of the cathepsin S isoform. Concurrent investigation of the P1 and P2 subsites resulted in the discovery of several potent and selective inhibitors of cathepsin S with good pharmacokinetic properties due to the elimination of saturated aliphatic P2 residues.  相似文献   

11.
Lecaille F  Choe Y  Brandt W  Li Z  Craik CS  Brömme D 《Biochemistry》2002,41(26):8447-8454
The primary specificity of papain-like cysteine proteases (family C1, clan CA) is determined by S2-P2 interactions. Despite the high amino acid sequence identities and structural similarities between cathepsins K and L, only cathepsin K is capable of cleaving interstitial collagens in their triple helical domains. To investigate this specificity, we have engineered the S2 pocket of human cathepsin K into a cathepsin L-like subsite. Using combinatorial fluorogenic substrate libraries, the P1-P4 substrate specificity of the cathepsin K variant, Tyr67Leu/Leu205Ala, was determined and compared with those of cathepsins K and L. The introduction of the double mutation into the S2 subsite of cathepsin K rendered the unique S2 binding preference of the protease for proline and leucine residues into a cathepsin L-like preference for bulky aromatic residues. Homology modeling and docking calculations supported the experimental findings. The cathepsin L-like S2 specificity of the mutant protein and the integrity of its catalytic site were confirmed by kinetic analysis of synthetic di- and tripeptide substrates as well as pH stability and pH activity profile studies. The loss of the ability to accept proline in the S2 binding pocket by the mutant protease completely abolished the collagenolytic activity of cathepsin K whereas its overall gelatinolytic activity remained unaffected. These results indicate that Tyr67 and Leu205 play a key role in the binding of proline residues in the S2 pocket of cathepsin K and are required for its unique collagenase activity.  相似文献   

12.
The synthesis and structure-activity relationship of a series of arylaminoethyl amide cathepsin S inhibitors are reported. Optimization of P3 and P2 groups to improve overall physicochemical properties resulted in significant improvements in oral bioavailability over early lead compounds. An X-ray structure of compound 37 bound to the active site of cathepsin S is also reported.  相似文献   

13.
Starting from a potent pantolactone ketoamide cathepsin K inhibitor discovered from structural screening, conversion of the lactone scaffold to a pyrrolidine scaffold allowed exploration of the S(3) subsite of cathepsin K. Manipulation of P3 and P1' groups afforded potent inhibitors with drug-like properties.  相似文献   

14.
A series of N(alpha)-2-benzoxazolyl-alpha-amino acid-(arylaminoethyl)amides were identified as potent, selective, and noncovalent inhibitors of cathepsin S. Structure-activity relationships including strategies for modulating the selectivities among cathepsins S, K, and L, and in vivo pharmacokinetics are discussed. A X-ray structure of compound 3 bound to the active site of cathepsin S is also reported.  相似文献   

15.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P(2) position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P(2) was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 microM for cathepsin L and Ki > 100 microM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

16.
Cathepsin P is a recently discovered placental cysteine protease that is structurally related to the more ubiquitously expressed, broad-specificity enzyme, cathepsin L. We studied the substrate specificity requirements of recombinant mouse cathepsin P using fluorescence resonance energy transfer (FRET) peptides derived from the lead sequence Abz-KLRSSKQ-EDDnp (Abz, ortho-aminobenzoic acid and EDDnp, N-[2,4-dinitrophenyl]ethylenediamine). Systematic modifications were introduced resulting in five series of peptides to map the S(3) to S(2)(') subsites of the enzyme. The results indicate that the subsites S(1), S(2), S(1)('), and S(2)('), present a clear preference for hydrophobic residues. The specificity requirements of the S(2) subsite were found to be more restricted, preferring hydrophobic aliphatic amino acids. The S(3) subsite of the enzyme presents a broad specificity, accepting negatively charged (Glu), positively charged (Lys, Arg), and hydrophobic aliphatic or aromatic residues (Val, Phe). For several substrates, the activity of cathepsin P was markedly regulated by kosmotropic salts, particularly Na(2)SO(4). No significant effect on secondary or tertiary structure could be detected by either circular dichroism or size exclusion chromatography, indicating that the salts most probably disrupt unfavorable ionic interactions between the substrate and enzyme active site. A substrate based upon the preferred P(3) to P(2)(') defined by the screening study, ortho-aminobenzoic-Glu-Ile-Phe-Val-Phe-Lys-Gln-N-(2,4-dinitrophenyl)ethylenediamine (cleaved at the Phe-Val bond) was efficiently hydrolyzed in the absence of high salt. The k(cat)/K(m) for this substrate was almost two orders of magnitude higher than that of the original parent compound. These results show that cathepsin P, in contrast to other mammalian cathepsins, has a restricted catalytic specificity.  相似文献   

17.
A series of ketoamides were synthesized and evaluated for inhibitory activity against cathepsin K. Exploration of the interactions between achiral P(2) substituents and the cysteine protease based on molecular modelling suggestions resulted in potent cathepsin K inhibitors that demonstrated high selectivity versus cathepsins B, H, and L. Subsequent modifications of the P(3), P(1), and P(1') moieties afforded orally bioavailable inhibitors.  相似文献   

18.
Pyrrolopyrimidine, a novel scaffold, allows to adjust interactions within the S3 subsite of cathepsin K. The core intermediate 10 facilitated the P3 optimization and identified highly potent and selective cathepsin K inhibitors 11-20.  相似文献   

19.
We report a novel series of noncovalent inhibitors of cathepsin S. The synthesis of the peptidomimetic scaffold is described and structure-activity relationships of P3, P1, and P1' subunits are discussed. Lead optimization to a non-peptidic scaffold has resulted in a new class of potent, highly selective, and orally bioavailable cathepsin S inhibitors.  相似文献   

20.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号