首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recent hypothesis suggests that proteolytic activity of the micromolar and millimolar Ca2+-requiring forms of the Ca2+-dependent proteinases (mu- and m-calpain, respectively) is regulated in vivo by their association with a phosphatidylinositol-containing site on the plasma membrane followed by autolysis of the proteinases. Phosphatidylinositol association lowers the Ca2+ concentration needed for autolysis, and autolysis, in turn, lowers the Ca2+ concentration needed for proteolytic activity. To test this hypothesis, we have compared the Ca2+ concentrations needed for autolysis and for proteolytic activity of the calpains both in the presence and the absence of phosphatidylinositol. Bovine skeletal muscle mu-calpain required 40-50 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 140-150 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 190-210 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. Consequently, mu-calpain is an active proteinase and does not require autolysis for activation. Bovine skeletal muscle m-calpain required 700-740 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 370-400 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 740-780 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. These results are consistent with the idea that m-calpain functions in its autolyzed form, but the results do not demonstrate that unautolyzed m-calpain is inactive. 80 microM phosphatidylinositol had no effect on the Ca2+ requirement of the autolyzed forms of either mu- or m-calpain but lowered the specific activity of mu-calpain to 20% of its activity in the absence of phosphatidylinositol. Of the four forms of the calpains, unautolyzed m-calpain, autolyzed m-calpain, and unautolyzed mu-calpain would not be proteolytically active at the free Ca2+ concentrations of 300-1200 nM present inside normal cells, and neither mu- nor m-calpain would undergo autolysis at these Ca2+ concentrations, even in the presence of phosphatidylinositol. Cells must contain a mechanism other than or in addition to membrane association and autolysis to activate the calpains.  相似文献   

2.
The calcium-sensing receptor (CaR) is a G protein-coupled, seven-transmembrane receptor and resides within caveolin-rich membrane domains in bovine parathyroid cells. The proenzyme of calpain 2 (m-calpain) is a heterodimeric calcium-dependent cysteine protease consisting of catalytic and regulatory subunits. The effects of calcium on the enzyme include activation, autolysis, and subunit dissociation. Here, we examine the potential role of caveolin-1 and caveolae in regulating the cellular distribution and function of m-calpain in parathyroid cells. We show that the inactive heterodimeric forms of m-calpain are concentrated in caveolin-rich membrane fractions prepared from parathyroid cells incubated with low extracellular calcium (Ca2+(o)). In contrast, in cells incubated with 3 mm Ca2+(o), which activates the CaR and increases intracellular calcium, there is a reduction in m-calpain in association with an increase in CaR protein and phosphorylated protein kinase C alpha and beta in caveolin-rich fractions. To assess the impact of activation of calpain on CaR protein in caveolar fractions, we analyzed the effects of m-calpain on the CaR. Activation of the CaR with high Ca2+(o) induced the release of lower molecular weight fragments of the receptor into the cell culture medium, and calpain inhibitors blocked this effect. Moreover, the fragments of the CaR as well as caveolin-1, m-calpain, and alkaline phosphatase were localized in membrane vesicles shed by parathyroid cells, supporting the association of these proteins in living cells. Treatment of CaR proteins in vitro with m-calpain also resulted in the appearance of lower molecular weight fragments of the CaR. Our data suggest that localization of m-calpain within caveolae may contribute to maintenance of the enzyme in an inactive state and that m-calpain may also contribute to the regulation of CaR levels.  相似文献   

3.
The calpains form a growing family of structurally related intracellular multidomain cysteine proteinases containing a papain-related catalytic domain, whose activity depends on calcium. The calpains are believed to play important roles in cytoskelatel remodeling processes, cell differentiation, apoptosis and signal transduction, but are also implicated in a number of diseases. Recent crystal structures of truncated rat and full-length human apo-m-calpain revealed the domain arrangement and explained the inactivity of m-calpain in the absence of calcium by a disrupted catalytic domain. Proteolysis studies have indicated several susceptible sites, in particular in the catalytic subdomain IIb and in the following domain III, which are more accessible to attacking proteinases in the presence than in the absence of calcium. The current view is that m-calpain exhibits a number of calcium binding sites, which upon calcium binding cooperatively interact, triggering the reformation of a papain-like catalytic domain, accompanied by enhanced mobilisation of the whole structure. To further analyse the flexibility of m-calpain, we have determined and refined the human full-length apo-m-calpain structure of a second crystal form to 3.15 A resolution. Here we present this new structure, compare it with our first structure now re-refined with tighter constrain parameters, discuss the flexibility in context with the proteolysis and calcium binding data available, and suggest implications for the calcium-induced activation process.  相似文献   

4.
The free Ca(2+) concentrations required for half-maximal proteolytic activity of m-calpain are in the range of 400-800 microM and are much higher than the 50-500 nM free Ca(2+) concentrations that exist in living cells. Consequently, a number of studies have attempted to find mechanisms that would lower the Ca(2+) concentration required for proteolytic activity of m-calpain. Although autolysis lowers the Ca(2+) concentration required for proteolytic activity of m-calpain, 90-400 microM Ca(2+) is required for a half-maximal rate of autolysis of m-calpain, even in the presence of phospholipid. It has been suggested that mu-calpain, which has a lower Ca(2+) requirement than m-calpain, might proteolyze m-calpain and reduce its Ca(2+) requirement to a level that would allow it to be active at physiological Ca(2+) concentrations. We have incubated m-calpain with mu-calpain for 60 min at a ratio of 1:50 mu-calpain:m-calpain, in the presence of 50 microM free Ca(2+); this Ca(2+) concentration is high enough for more than half-maximal activity of mu-calpain, but does not activate m-calpain. Under these conditions, mu-calpain caused no detectable proteolytic degradation of the m-calpain polypeptide and did not change the Ca(2+) concentration required for proteolytic activity of m-calpain. mu-Calpain also did not degrade the m-calpain polypeptide at 1000 microM Ca(2+), which is a Ca(2+) concentration high enough to completely activate m-calpain. It seems unlikely that mu-calpain could act as an "activator" of m-calpain in living cells. Because m-calpain rapidly degrades itself (autolyzes) at 1000 microM Ca(2+) and because the subsite specificities of mu- and m-calpain are very similar if not identical, failure of mu-calpain to rapidly degrade m-calpain at 1000 microM Ca(2+) suggests a unique role of autolysis in calpain function.  相似文献   

5.
The hypothesis that insulin action involves a membrane proteolytic step was further explored, by using isolated rat adipocytes and liver plasma membranes. (1) The maximal insulin stimulation of 2-deoxyglucose transport and lipogenesis in fat-cells was selectively inhibited (73-88%) by N alpha-p-tosyl-L-lysine chloromethyl ketone (Tos-Lys-CH2Cl; active-site inhibitor of trypsin; 30-125 microM), p-nitrophenyl p'-guanidinobenzoate (active-site inhibitor of serine proteinases; 30-125 microM) and p-tosyl-L-arginine methyl ester (arginine ester substrate analogue of proteinases; 1-2 mM), under conditions where neither the basal rate of each metabolic process nor insulin binding nor cellular ATP content were affected. In contrast, N-acetyl-L-alanyl-L-alanyl-L-alanine methyl ester (alanine ester substrate analogue of proteinases; 1-2 mM) was ineffective. (2) Endoproteinase Arg-C (0.25-40 micrograms/ml) exerted dose-dependent insulin-like effects on both 2-deoxyglucose transport and lipogenesis in fat-cells, whereas endoproteinase Lys-C (5-100 micrograms/ml) was ineffective. The maximal activation by endoproteinase Arg-C of both processes (200 and 177% of control values respectively) was shown to occur under conditions where membrane integrity (assessed by measurement of lactate dehydrogenase leakage and passive glucose diffusion) was preserved. This effect was inhibited by Tos-Lys-CH2Cl (125 microM) and was not additive with the maximal insulin effect. (3) Insulin (1-100 ng/ml) produced a dose-dependent increase in the trichloroacetic acid-soluble 125I radioactivity released after a 30 min incubation at 37 degrees C of 125I-labelled liver plasma membranes, but was ineffective on 125I-labelled bovine serum albumin. Insulin effects on both radio-labelled proteins were reproduced by wheat-germ agglutinin (20 micrograms/ml), an insulin mimicker shown to act through the insulin receptor. These data provide further evidence for the hypothesis that insulin bioeffects involve the activation of a membrane serine proteinase with arginine specificity.  相似文献   

6.
Two novel proteinases were isolated from resting sorghum seeds and purified 100-fold. The activity of the purified enzymes was completely inhibited by pepstatin A and was unaffected by PMSF, leupeptin, EDTA and E-64 (L-trans-epoxysuccinyl leucylamino 4 guanidino butane), which indicates that they belong to the class of aspartic proteinases. SDS-PAGE and native-PAGE revealed a monomeric 29-kDa enzyme and a heterodimeric 61-kDa enzyme with two S-S linked subunits of 49 and 12 kDa. The proteases have maximum activity at 45 °C and pH 3.5, with haemoglobin as substrate. Activity at 60 °C is higher than at 30 °C.  相似文献   

7.
Abstract: The potencies of three peptide aldehyde inhibitors of calpain (calpain inhibitors 1 and 2 and calpeptin) as inhibitors of four catalytic activities of the multicatalytic proteinase complex (MPC) were compared with their potencies as inhibitors of m-calpain. The chymotrypsinlike activity (cleavage after hydrophobic amino acids) and the caseinolytic activity (degradation of β-casein) of MPC were strongly inhibited by calpain inhibitors 1 and 2 (IC50 values in the low micromolar range). Cleavage by MPC after acidic amino acids (peptidylglutamyl-peptide bond hydrolyzing activity) and basic amino acids (trypsinlike activity) was inhibited less effectively, declining moderately with increasing concentrations of calpain inhibitors 1 and 2. Calpeptin only weakly inhibited the four MPC activities, yet was the most potent inhibitor of m-calpain. These results indicate that caution must be exercised when calpain inhibitors 1 and 2 are used to infer calpain function. Calpeptin may be a better choice for such studies, although its effect on other cysteine or serine proteinases remains to be determined.  相似文献   

8.
Digestive proteinases were isolated and partially purified from the pyloric ceca of trout and salmon. Their stability and some catalytic properties were compared with those of a three-enzyme system that is used for determination of in vitro protein digestibility. In contrast to the three-enzyme system, pyloric ceca trypsin and total proteinase activity were least stable at pH values below 5.0 and most stable under alkaline conditions up to pH 10.0. Thermal inactivation (50%) occurred in 60 min at 55°C for trypsin activity of trout and salmon ceca proteinases and at 40°C for the three-enzyme system at the pH (8.0) of the in vitro assay. Thermal inactivation (50%) of total proteinase activity occurred in 60 min at about 55, 50 and 35°C for chinook, trout and three-enzyme preparations, respectively. SDS-PAGE zymograms of the ceca enzymes showed the presence of several proteolytic activity bands. Two of the bands corresponded in molecular weight to trypsin and chymotrypsin. Ceca proteinases differ from the three-enzyme system in their response to inhibitors; in particular, the ceca proteinases are much more sensitive to soybean trypsin inhibitor than the procine trypsin used in the three-enzyme system when assayed for trypsin, but less sensitive when assayed for total proteinase. The distinctive properties of ceca enzymes help explain why they are more appropriate than the three-enzyme system, and other enzyme cocktails for in vitro protein digestibility assay of saunonid feed components.  相似文献   

9.
The proteolytic system of the phytopathogenic and dimorphic fungus Ustilago maydis is not known. In this work, we report the presence of at least four proteases from two haploid strains of U. maydis. Activities of two proteinases pumA and pumB, aminopeptidase pumAPE, and dipeptidylaminopeptidase pumDAP were measured under several nutritional and morphological conditions, including the yeast-mycelium transition. The activity of pumA was found in the intracellular and extracellular fractions, pumAi and pumAe, respectively. The latter activity was detected only during the yeast-mycelium dimorphic transition induced by growth at acid pH in a medium containing ammonium as the sole nitrogen source. Activity of pumAe was partially inhibited by Pepstatin A, which also inhibited mycelium formation. Activity of pumAi was inhibited by this specific inhibitor of aspartyl-proteases. Activity of pumB was detected in intracellular and extracellular fractions, mostly bound to an endogenous inhibitor, which was removed by treatment at acid pH. This fungus contains at least two soluble pumAPE, which might be metallo-proteases, because they were inhibited by EDTA and 1-10, phenanthroline. When the fungus was grown in media containing proline or corn infusion as the nitrogen source, an intracellular pumDAP activity was detected. No carboxypeptidase activity was found with N-benzoyl-l-tyrosine-4-nitroanilide as substrate in any of the conditions tested in any of the U. maydis strains analyzed.  相似文献   

10.
Calcineurin (CaN) has been reported as a critical mediator for cardiac hypertrophy and cardiac myocyte apoptosis. In the present study, we investigated the activity and expression of CaN and the effect of calpain in rat heart after ischemia and reperfusion. Rat ischemic heart showed significant increase in CaN activity. Western blot analysis of normal rat heart extract with a polyclonal antibody raised against bovine CaN indicated a prominent immunoreactive band of 60 kDa (CaN A). In ischemic-reperfused hearts, the expression of CaN A was significantly low and immunoreactivity was observed in proteolytic bands of 46 kDa. This may be due to the proteolytic degradation of CaN A in ischemic tissues by m-calpain. We also noticed in vitro proteolysis of bovine cardiac CaN A by m-calpain. Immunohistochemical studies showed strong staining of immunoreactivity in rat hearts that had gone under 30 min ischemia followed by 30 min reperfusion similar to that found in human ischemic heart. Ischemia is associated with multiple alterations in the extracellular and intracellular signaling of cardiomyocytes and may act as an inducer of apoptosis. The increase in CaN activity and strong immunostaining observed in ischemic/perfused rat heart may be due to the calpain-mediated proteolysis of this phosphatase.  相似文献   

11.
G Salvesen  J J Enghild 《Biochemistry》1990,29(22):5304-5308
The majority of proteinases exist as zymogens whose activation usually results from a single proteolytic event. Two notable exceptions to this generalization are the serine proteinases neutrophil elastase (HNE) and cathepsin G (cat G), proteolytic enzymes of human neutrophils that are apparently fully active in their storage granules. On the basis of amino acid sequences inferred from the gene and cDNAs encoding these enzymes, it is likely that both are synthesized as precursors containing unusual C-terminal and N-terminal peptide extensions absent from the mature proteins. We have used biosynthetic radiolabeling and radiosequencing techniques to identify the kinetics of activation of both proteinases in the promonocyte-like cell line U937. We find that both N- and C-terminal extensions are removed about 90 min after the onset of synthesis, resulting in the activation of the proteinases. HNE and cat G are, therefore, transiently present as zymogens, presumably to protect the biosynthetic machinery of the cell from adventitious proteolysis. Activation results from cleavage following a glutamic acid residue to give an activation specificity opposite to those of almost all other serine proteinase zymogens, but shared, possibly, by the "granzyme" group of related serine proteinases present in the killer granules of cytotoxic T-lymphocytes and rat mast cell proteinase II.  相似文献   

12.

Background  

μ-calpain and m-calpain are ubiquitously expressed proteases implicated in cellular migration, cell cycle progression, degenerative processes and cell death. These heterodimeric enzymes are composed of distinct catalytic subunits, encoded by Capn1 (μ-calpain) or Capn2 (m-calpain), and a common regulatory subunit encoded by Capn4. Disruption of the mouse Capn4 gene abolished both μ-calpain and m-calpain activity, and resulted in embryonic lethality, thereby suggesting essential roles for one or both of these enzymes during mammalian embryogenesis. Disruption of the Capn1 gene produced viable, fertile mice implying that either m-calpain could compensate for the loss of μ-calpain, or that the loss of m-calpain was responsible for death of Capn4 -/- mice.  相似文献   

13.
Ubiquitously expressed mu- and m-calpain proteases are implicated in development and apoptosis. They consist of 80-kDa catalytic subunits encoded by the capn1 and capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the capn4 gene. The regulatory subunit is required to maintain the stability and activity of mu- and m-calpains. Accordingly, genetic disruption of capn4 in the mouse eliminated both ubiquitous calpain activities. In embryonic fibroblasts derived from these mice, calpain deficiency correlated with resistance to endoplasmic reticulum (ER) stress-induced apoptosis, and this was directly related to a calpain requirement for activation of both caspase-12 and the ASK1-JNK cascade. This study provides compelling genetic evidence for calpain's role in caspase-12 activation at the ER, and reveals a novel role for the ubiquitous calpains in ER-stress induced apoptosis and JNK activation.  相似文献   

14.
The moulting gel of silkmoths lacks proteolytic activity but contains an inactive form of the proteinases which are later found in the moulting fluid. These inactive enzymes are activatable in vitro by dilution, activation proceeding most rapidly at low ionic strength. Activation proceeds as a first-order process and is not autocatalytic. Approximately the full amount of proteinases ultimately found in moulting fluid are already present in the gel. Moulting gel does not inhibit the active proteinases of moulting fluid; moreover, the proteolytic activity elicited by dilution of the moulting gel does not disappear upon reconcentration. These observations suggest that the proteinases in moulting gel are not inhibited by a stable, dissociable inhibitor; they may be present either as compartmentalized active enzymes or as proenzymes. Several possible mechanisms for the in vivo activation at the time of gel to fluid transformation are discussed.  相似文献   

15.
Conditional disruption of ubiquitous calpains in the mouse   总被引:1,自引:0,他引:1  
Ubiquitous mu- and m-calpain proteases are implicated in development and apoptosis. They are heterodimers consisting of 80-kDa catalytic subunits encoded by capn1 and capn2, respectively, and a common 28-kDa regulatory subunit encoded by capn4. The regulatory subunit is required to maintain stability and activity of mu- and m-calpains; thus, genetic disruption of capn4 was predicted to eliminate both calpain activities. Germline disruption of capn4 caused embryonic lethality, hampering the use of those mouse models to explore physiological calpain functions. Here we describe a loxP/cre conditional capn4 targeted mouse model that enables tissue-specific and temporal deletion of calpain activity. Disruption of the floxed capn4 gene using a ubiquitous cytomegalovirus promoter driven Cre recombinase transgene led to midgestation embryonic lethality. Fibroblasts from these embryos lacked detectable regulatory subunit expression, had reduced levels of the mu- and m-calpain catalytic subunits, and had no detectable mu- and m-calpain activities. These defects were corrected with a capn4-encoding lentivirus.  相似文献   

16.
Calpains, the intracellular proteolytic enzymes, play important roles in various processes in cells. The lack of calpain or its overexpression is thought to be an underlying factor in some diseases. In this study, we report the synthesis of a new group of cell-penetrating calpastatin-peptide conjugates with the activating capacity of m-calpain intracellularly. In these constructs, peptides related to the calpastatin A or C subunit with the capabiliy of activation of isolated m-calpain was covalently conjugated to the C-terminal of penetratin via amide, thioether, or disulfide bond. These conjugates were prepared by solid-phase synthesis and/or by chemical ligation and properly characterized (MS, HPLC). Our results using isolated m-calpain suggest that conjugation does not interfere with the enzyme-activating effect of the calpastatin peptides; in fact, the efficiency of the conjugates was markedly higher. The conjugates with different bonds showed essentially the same level of activation. Internalization experiments with fluorophore (4-[7-hydroxycoumaryl] acetic acid (Hca) at the N-terminal of penetratin and/or 5(6)-carboxyfluorescein (cf)) labeled conjugates show that these constructs are taken up by COS-7 cells. Using cell lysates produced after incubation with the 1:1 (mol/mol) mixture of calpastatin A and C peptide conjugates, we found a significant calpain activating effect. We also noticed that the conjugate even with a disulfide bond between the components seems to be stable and activate m-calpain after intracellular translocation under the conditions studied. To the best of our knowledge, this is the first report to describe conjugates with an m-calpain activating effect on isolated enzymes and more importantly within living cells after transmembrane delivery. Thus, these conjugates seem to be appropriate as molecular tools to activate intracellular m-calpain and to study calpain functions in living cells.  相似文献   

17.
Certain aryl 4-guanidinobenzoates (AGs; inhibitors of proteinases, including the sperm enzyme acrosin) have been shown to be more potent vaginal contraceptives in rabbits and less toxic than nonoxynol-9, the active ingredient of most marketed vaginal contraceptive formulations. To determine if these AGs can contact sperm and inhibit acrosin when mixed with the entire human ejaculate for a short period of time (roughly imitating clinical conditions), the inhibitors were added to semen at various concentrations for 2 min, after which the seminal plasma and unbound inhibitor were removed from the sperm by Ficoll centrifugation. Subsequently, the total arginine amidolytic activity of the spermatozoa was determined spectrophotometrically after a combined treatment that resulted in extraction, proacrosin activation, and reaction with substrate. Dose-response curves were prepared. All AGs studied were effective inhibitors of the amidolytic activity under these conditions, with ED50 values (the dose levels at which half of the acrosin associated with 10(6) sperm is inhibited) ranging from 10(-5) to 10(-7) M. To determine the effect on the proteolytic activity of individual spermatozoa, the experiment was repeated with 4'-acetamidophenyl 4-guanidinobenzoate (AGB), and the protease released from the sperm was measured by the gelatin-plate assay. The inhibition results were similar to those obtained by extraction of the spermatozoa and measurement of amidolytic activity. Thus, when mixed with the human ejaculate, AGs interact rapidly with spermatozoa to inhibit both their arginine amidolytic and proteolytic activity (probably due primarily or only to inhibition of acrosin) and remain bound even after removal of the seminal plasma. These data encourage further study of the compounds for contraceptive purposes.  相似文献   

18.
Chicken breast muscle has three Ca2+-dependent proteinases, two requiring millimolar Ca2+ (m-calpain and high m-calpain) and one requiring micromolar Ca2+ (mu-calpain). High m-calpain co-purifies with mu-calpain through successive DEAE-cellulose (steep gradient), phenyl-Sepharose, octylamine agarose, and Sephacryl S-300 columns, but elutes after mu-calpain when using a shallow KCl gradient to elute a DEAE-cellulose column. The mu- and m-calpains have 80 and 28 kDa polypeptides and are analogous to the mu- and m-calpains that have been purified from bovine, porcine and rabbit skeletal muscle. High m-calpain, which seems to be a new Ca2+-dependent proteinase, is still heterogeneous after the DEAE-cellulose column eluted with a shallow KCl gradient. Additional purification through two successive HPLC-DEAE columns and one HPLC-SW-4000 gel permeation column produces a fraction having six major polypeptides and 6-8 minor polypeptides on SDS-PAGE. A 74-76 kDa polypeptide in this fraction reacts in Western blots with monospecific, polyclonal anti-calpain antibodies that react with both the 80 kDa and the 28 kDa polypeptides of mu- or m-calpain. High m-calpain also is related to mu- and m-calpain in that it causes the same limited digestion of skeletal muscle myofibrils, has a similar pH optimum near pH 7.9-8.4, requires Ca2+ for activity, and reacts with the calpain inhibitor, calpastatin, and a variety of serine and cysteine proteinase inhibitors in a manner identical to mu- and m-calpain. High m-calpain differs from mu- and m-calpain in its elution off DEAE-cellulose columns and its requirement of 3800 microM Ca2+ for one-half maximal activity compared with 5.35 microM Ca2+ for mu-calpain and 420 microM Ca2+ for m-calpain. The physiological significance of high m-calpain in unclear. The presence of mu-calpain in chicken breast muscle suggests that all skeletal muscles contain both mu- and m-calpain, although the relative proportions of these two proteinases may vary in different species.  相似文献   

19.
Proteinase activities in the larval midguts of the bruchids Callosobruchus maculatus and Zabrotes subfasciatus were investigated. Both midgut homogenates showed a slightly acidic to neutral pH optima for the hydrolysis of fluorogenic substrates. Proteolysis of epsilon-aminocaproil-Leu-Cys(SBzl)-MCA was totally inhibited by the cysteine proteinase inhibitors E-64 and leupeptin, and was activated by 1.5 mM DTT in both insects, while hydrolysis of the substrate Z-ArgArg-MCA was inhibited by aprotinin and E-64, which suggests that it is being hydrolysed by serine and cysteine proteinases. Gel assays showed that the proteolytic activity in larval midgut of C. maculatus was due to five major cysteine proteinases. However, based on the pattern of E-64 and aprotinin inhibition, proteolytic activity in larval midgut of Z. subfasciatus was not due only to cysteine proteinases. Fractionation of the larval midgut homogenates of both bruchids through ion-exchange chromatography (DEAE-Sepharose) revealed two peaks of activity against Z-ArgArg-MCA for both bruchid species. The fractions from C. maculatus have characteristics of cysteine proteinases, while Z. subfasciatus has one non-retained peak of activity containing cysteine proteinases and another eluted in a gradient of 250-350 mM NaCl. The proteolytic activity of the retained peak is higher at pH 8.8 than at pH 6.0 and corresponds with a single peak that is active against N-p-tosyl-GlyGlyArg-MCA, and sensitive to 250 microM aprotinin (90% inhibition). The peak contains a serine proteinase which hydrolyzes alpha-amylase inhibitor 1 from the common bean (Phaseolus vulgaris). Arch.  相似文献   

20.
Effect of Ca2+ on binding of the calpains to calpastatin   总被引:1,自引:0,他引:1  
Autolyzed mu-calpain, unautolyzed mu-calpain, autolyzed m-calpain, and unautolyzed m-calpain (mu-calpain is the micromolar Ca2+-requiring proteinase, m-calpain is the millimolar Ca2+-requiring proteinase) were passed through a calpastatin-affinity column at different free Ca2+ concentrations, and binding of the calpains to calpastatin was compared with proteolytic activity of that calpain at each Ca2+ concentration. Unautolyzed m-calpain, autolyzed m-calpain, and autolyzed mu-calpain required less Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Unautolyzed mu-calpain, however, required slightly more Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Half-maximal binding of oxidatively inactivated mu- or m-calpain to calpastatin required approximately the same Ca2+ concentrations as half-maximal binding of unautolyzed mu- or m-calpain, respectively, to calpastatin. Binding of unautolyzed m-calpain and autolyzed mu-calpain to calpastatin occurred over a wide range of Ca2+ concentrations, and it seems likely that two or more Ca2+-binding sites with different Ca2+-binding constants are involved in binding of the calpains to calpastatin. Proteolytic activity occurs at different Ca2+ concentrations than calpastatin binding, suggesting a second set of Ca2+-binding sites associated with proteolytic activity. Third and fourth sets of Ca2+-binding sites may be involved in autolysis and in binding to phosphatidylinositol or cell membranes; these four Ca2+-dependent properties of the calpains may require the eight potential Ca2+-binding sites that amino acid sequences predict are present in the calpain molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号