首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery.  相似文献   

2.
Polarity is a central feature of eukaryotic cells and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) has a central role in the polarization of neurons and chemotaxing cells. In polarized epithelial cells, PtdIns(3,4,5)P3 is stably localized at the basolateral plasma membrane, but excluded from the apical plasma membrane, as shown by localization of GFP fused to the PtdIns(3,4,5)P3-binding pleckstrin-homology domain of Akt (GFP-PH-Akt), a fusion protein that indicates the location of PtdIns(3,4,5)P3. Here, we ectopically inserted exogenous PtdIns(3,4,5)P3 into the apical plasma membrane of polarized Madin-Darby canine kidney (MDCK) cells. Within 5 min many cells formed protrusions that extended above the apical surface. These protrusions contained basolateral plasma membrane proteins and excluded apical proteins, indicating that their plasma membrane was transformed from apical to basolateral. Addition of PtdIns(3,4,5)P3 to the basolateral surface of MDCK cells grown as cysts caused basolateral protrusions. MDCK cells grown in the presence of a phosphatidylinositol 3-kinase inhibitor had abnormally short lateral surfaces, indicating that PtdIns(3,4,5)P3 regulates the formation of the basolateral surface.  相似文献   

3.
《The Journal of cell biology》1990,111(6):2923-2930
In different epithelial cell types, integral membrane proteins appear to follow different sorting pathways to the apical surface. In hepatocytes, several apical proteins were shown to be transported there indirectly via the basolateral membrane, whereas in MDCK cells a direct sorting pathway from the trans-Golgi-network to the apical membrane has been demonstrated. However, different proteins had been studied in these cells. To compare the sorting of a single protein in both systems, we have expressed aminopeptidase N, which already had been shown to be sorted indirectly in hepatocytes, in transfected MDCK cells. As expected, it was predominantly localized to the apical domain of the plasma membrane. By monitoring the appearance of newly synthesized aminopeptidase N at the apical and basolateral surface, it was found to be directly sorted to the apical domain in MDCK cells, indicating that the sorting pathways are indeed cell type-specific.  相似文献   

4.
Cell migration is central to many biological and pathological processes, including embryogenesis, tissue repair and regeneration as well as cancer and the inflammatory response. In general, cell migration can be usefully conceptualized as a cyclic process. The initial response of a cell to a migration-promoting agent is to polarize and extend protrusions in the direction of migration. These protrusions can be large, broad lamellipodia or spike-like filopodia, are usually driven by actin polymerization, and are stabilized by adhering to the extracellular matrix (ECM) via transmembrane receptors of the integrin family linked to the actin cytoskeleton. These adhesions serve as traction sites for migration as the cell moves forward over them, and they must be disassembled at the cell rear, allowing it to detach. The mechanisms of rear detachment and the regulatory processes involved are not well understood. The disassembly of adhesions that is required for detachment depends on a coordinated interaction of actin and actin-binding proteins, signaling molecules and effector enzymes including proteases, kinases and phosphatases. Originally, the biochemically regulated processes leading to rear detachment of migrating cells were thought not to be necessarily accompanied by any loss of cell material. However, it has been shown that during rear detachment long tubular extensions, the retracting fibers, are formed and that "membrane ripping" occurs at the cell rear. By this process, a major fraction of integrin-containing cellular material is left behind forming characteristic migration tracks that exactly mark the way a cell has taken.  相似文献   

5.
Three basic types of cells are distinguished in the rat vomeronasal epithelium at birth: bipolar neurons, supporting cells, and basal cells. Neurons at this time include both immature and differentiated cells. By the end of the first postnatal week, all neurons show morphological signs of maturity in their cytoplasm, including abundant granular and smooth endoplasmic reticulum, neurotubules, dense lamellar bodies, apical centrioles, and tufts of microvilli. During the third week microvilli are more frequently encountered and appear to be longer and more branched. Supporting cells appear well-developed by the second day after birth. During the first ten days of life, supporting cells lose their centrioles and all of the complex associated with ciliary generation in the apical zone. Basal cells appear to be more numerous in newborns than in older animals. Protrusions projecting into the lumen are frequently observed in the epithelium of newborn animals, both on the dendrites of neurons and on supporting cells. After the third week, such protrusions are only observed in the transitional zone between the sensory and the non-sensory epithelia of the vomeronasal tubes. In this transitional zone, a fourth cell type showing apical protrusions with microvilli differentiates. Cytoplasm in this type resembles that of neighboring ciliated cells but has no cilia or centrioles. These transitional cells are considered to be cells in an intermediate state of differentiation, between that of the differentiated neurons and supporting cells of the sensory epithelium and that of the predominate ciliated cells of the non-sensory epithelium. The results suggest that by the end of the third week the vomeronasal epithelium is morphologically mature.  相似文献   

6.
The attachment of epithelial cells to the extracellular matrix substratum is essential for their differentiation and polarization. Despite this, the precise adhesion mechanism and its regulation are poorly understood. In the kidney, an ischemic insult causes renal tubular epithelial cells to detach from the basement membrane, even though they remain viable. To understand this phenomenon, and to probe the regulation of epithelial cell attachment, we used a model system consisting of newly adherent Madin-Darby canine kidney (MDCK) cells subjected to ATP depletion to mimic ischemic injury. We found that MDCK cells detach from collagen I after 60 min of ATP depletion but reattach when resupplied with glucose. Detachment is not caused by degradation or endocytosis of 1-integrins, which mediate attachment to collagen I. Basal actin filaments and paxillin-containing adhesion complexes are disrupted by ATP depletion and quickly reform on glucose repletion. However, partial preservation of basal actin by overexpression of constitutively active RhoA does not significantly affect cell detachment. Furthermore, Y-27632, an inhibitor of the RhoA effector Rho-kinase, does not prevent reattachment of cells on glucose addition, even though reformation of central stress fibers and large adhesion complexes is blocked. In contrast, reattachment of ATP-depleted cells and detachment of cells not previously subjected to ATP depletion are prevented by ML-7, an inhibitor of myosin light chain kinase (MLCK). We conclude that initial adherence of MDCK cells to a collagen I substratum is mediated by peripheral actin filaments and adhesion complexes regulated by MLCK but not by stress fibers and adhesion complexes controlled by RhoA. focal complexes; focal adhesions; epithelial adhesion; stress fibers; Rho-kinase  相似文献   

7.
Plasma membrane proteins are supposed to form clusters that allow ‘functional cross-talk’ between individual molecules within nanometre distance. However, such hypothetical protein clusters have not yet been shown directly in native plasma membranes. Therefore, we developed a technique to get access to the inner face of the plasma membrane of cultured transformed kidney (MDCK) cells. The authors applied atomic force microscopy (AFM) to visualize clusters of native proteins protruding from the cytoplasmic membrane surface. We used the K+channel blocker iberiotoxin (IBTX), a positively charged toxin molecule, that binds with high affinity to plasma membrane potassium channels and to atomically flat mica. Thus, apical plasma membranes could be ‘glued’ with IBTX to the mica surface with the cytosolic side of the membrane accessible to the scanning AFM tip. The topography of these native inside-out membrane patches was imaged with AFM in electrolyte solution mimicking the cytosol. The plasma membrane could be clearly identified as a lipid bilayer with the characteristic height of 4.9±0.02nm. Multiple proteins protruded from the lipid bilayer into the cytosolic space with molecule heights between 1 and 20nm. Large protrusions were most likely protein clusters. Addition of the proteolytic enzyme pronase to the bath solution led to the disappearance of the proteins within minutes. The metabolic substrate ATP induced a shape-change of the protein clusters and smaller subunits became visible. ADP or the non-hydrolysable ATP analogue, ATP-γ-S, could not exert similar effects. It is concluded that plasma membrane proteins (and/or membrane associated proteins) form ‘functional clusters’ in their native environment. The ‘physiological’ arrangement of the protein molecules within a cluster requires ATP.  相似文献   

8.
The embryonic development of Melasoma saliceti takes eight days at room temperature. At the beginning of the 5th day the endoderm cells have already formed a unilayered epithelium of the midgut primordium. The midgut epithelium is formed by flat cells that are not connected by specialized intercellular junctions. Large vesicles can be seen in dilated intercellular spaces of the epithelium. Cytoplasmic projections, similar to microvilli, appear in the vesicles. During the 5th day ofdevelopment, the vesicles grow and become enclosed by the intercellular junctions of a zonula adherens type. During the 6th day of development the cell junctions surrounding the vesicles become transformed into a septate type. On the 8th day of development the vesicles come close to the apical sides of the midgut cells and open towards the yolk. At the same time the microvilli spread over the apical surface of the midgut primordium to form the regular brushborder of the larval midgut. In the species studied the vesicles appear to "prefabricate" the apical surfaces of the future midgut epithelium.  相似文献   

9.
Earlier studies using colchicine (L. G. Tilney and J. R. Gibbins, 1969, J. Cell Sci. 5, 195-210) had suggested that intact microtubules (MTs) are necessary for archenteron elongation during the second phase of sea urchin gastrulation (secondary invagination), presumably by allowing secondary mesenchyme cells (SMCs) to extend their long filopodial processes. In light of subsequently discovered effects of colchicine on other cellular processes, the role of MTs in archenteron elongation in the sea urchin, Lytechinus pictus, has been reexamined. Immunofluorescent staining of ectodermal fragments and isolated archenterons reveals a characteristic pattern of MTs in the ectoderm and endoderm during gastrulation. Ectodermal cells exhibit arrays of MTs radiating away from the region of the basal body/ciliary rootlet and extending along the periphery of the cell, whereas endodermal cells exhibit a similar array of peripheral MTs emanating from the region of the apical ciliary rootlet facing the lumen of the archenteron. MTs are found primarily at the bases of the filopodia of normal SMCs. beta-Lumicolchicine (0.1 mM), an analog of colchicine which does not bind tubulin, inhibits secondary invagination, indicating that the effects previously ascribed to the disruption of MTs are probably due to the effects of colchicine on other cellular processes. The MT inhibitor nocodazole (5-10 micrograms/ml) added prior to secondary invagination does not prevent gastrulation or spontaneous exogastrulation, even though indirect immunofluorescence indicates that cytoplasmic MTs are completely disrupted in drug-treated embryos. Transverse tissue sections indicate that a comparable amount of cell rearrangement occurs in nocodazole-treated and control embryos. Significantly, SMCs in nocodazole-treated embryos often detach prematurely from the tip of the gut rudiment and extend abnormally large broad lamellipodial protrusions but are also capable of extending long slender filopodia comparable in length to those of control embryos. These results indicate that cytoplasmic MTs are not essential for either filopodial extension by SMCs or for the active epithelial cell rearrangement which accompanies elongation during sea urchin gastrulation.  相似文献   

10.
During Xenopus gastrulation, the mesoderm migrates across a fibronectin (FN)-containing substrate, the inner surface of the blastocoel roof (BCR). A possible role for FN is to promote the extension of cytoplasmic processes which serve as locomotory organelles for mesoderm cells. To test this idea, the interaction of prospective head mesoderm (HM) cells with FN was examined in vitro. Nonattached HM cells extend filiform processes from an active region of the cell surface. This spontaneous activity is modulated by cell attachment to FN. Additional active regions appear, and cytoplasmic lamellae extend from these sites, leading to cell spreading and translocation. Thus, although FN seems not to induce processes de novo, it modulates a spontaneous protrusive activity to yield the extension of lamellae along the substrate surface. As putative locomotory organelles, HM cell protrusions were characterized functionally. They adhere rapidly and selectively to in situ substrates, preferentially to FN, and retract upon attachment. During translocation, the passive cell body is moved by the activity of the protrusions. Lamellae continuously extend, retract, or split into parts. This leads to an intermittent, nonpersistent mode of translocation. The polarity of HM cells, as expressed in the arrangement of protrusions, bears no constant relationship to the orientation of the cell body, and a cell can change its direction of movement without a corresponding rotation of the cell body. This may be relevant with respect to the mechanism by which mesoderm cells translate guidance cues of the BCR into a polarized, oriented cell structure during directional migration in situ.  相似文献   

11.
The changes that take place in the saccus vasculosus epithelium during smoltification of Atlantic salmon (Salmo salar) are described. The major cell type of the epithelium, the coronet cells, have a number (mean = 32) of spherical protrusions connected with a non-motile cilium to the apical part of the cell. The protrusions extend into the saccus lumen. In parr the protrusions become more spherical during the spring season, while in smolt the opposite process takes place. Parr coronet cells have most of the mitochondria in the apical part of the cell, while in smolt they are concentrated basally. The relative areal fraction of heterochromatin in the nuclei increase from 23 to 29 during the smoltification process. The results are consistent with the view that the coronet cells take an active part in the smoltification process.  相似文献   

12.
The multiple beta-actin rich pseudopodial protrusions of the invasive variant of Moloney sarcoma virus (MSV)-transformed epithelial MDCK cells (MSV-MDCK-INV) are strongly labeled for phosphotyrosine. Increased tyrosine phosphorylation among a number of proteins was detected in MSV-MDCK-INV cells relative to untransformed and MSV-transformed MDCK cells, especially for the hepatocyte growth factor receptor (HGF-R), otherwise known as c-met proto-oncogene. Cell surface expression of HGF-R was similar in the three cell lines, indicating that HGF-R is constitutively phosphorylated in MSV-MDCK-INV cells. Both the tyrosine kinase inhibitor herbimycin A and the HGFalpha antibody abolished HGF-R phosphorylation, induced retraction of pseudopodial protrusions, and promoted the establishment of cell-cell contacts as well as the apparition of numerous stabilizing stress fibers in MSV-MDCK-INV cells. Furthermore, anti-HGFalpha antibody abolished cell motility among MSV-MDCK-INV cells. Conditioned medium from MSV-MDCK-INV cells induced MDCK cell scattering, indicating that HGF is secreted by MSV-MDCK-INV cells. HGF titration followed by a subsequent washout of the antibodies led to renewed pseudopodial protrusion and cellular movement. We therefore show that activation of the tyrosine kinase activity of HGF-R/Met via an autocrine HGF loop is directly responsible for pseudopodial protrusion, thereby explaining the motile and invasive potential of this model epithelium-derived tumor cell line.  相似文献   

13.
Eph kinases and their ephrin ligands are widely expressed in epithelial cells in vitro and in vivo. Our results show that activation of endogenous EphA kinases in Madin-Darby canine kidney (MDCK) cells negatively regulates hepatocyte growth factor/scatter factor (HGF)-induced branching morphogenesis in collagen gel. Cotreatment with HGF and ephrin-A1 reduced sprouting of cell protrusions, an early step in branching morphogenesis. Moreover, addition of ephrin-A1 after HGF stimulation resulted in collapse and retraction of preexisting cell protrusions. In a newly developed assay that simulates the localized interactions between Ephs and ephrins in vivo, immobilized ephrin-A1 suppressed HGF-induced MDCK cell scattering. Ephrin-A1 inhibited basal ERK1/2 mitogen-activated protein kinase activity; however, the ephrin-A1 effect on cell protrusion was independent of the mitogen-activated protein kinase pathway. Ephrin-A1 suppressed HGF-induced activation of Rac1 and p21-activated kinase, whereas RhoA activation was retained, leading to the preservation of stress fibers. Moreover, dominant-negative RhoA or inhibitor of Rho-associated kinase (Y27632) substantially negated the inhibitory effects of ephrin-A1. These data suggest that interfering with c-Met signaling to Rho GTPases represents a major mechanism by which EphA kinase activation inhibits HGF-induced MDCK branching morphogenesis.  相似文献   

14.
The effects of viral Kirsten ras oncogene expression on the polarized phenotype of MDCK cells were investigated. Stable transformed MDCK cell lines expressing the v-K-ras oncogene were generated via infection with a helper-independent retroviral vector construct. When grown on plastic substrata, transformed cells formed continuous monolayers with epithelial-like morphology. However, on permeable filter supports where normal cells form highly polarized monolayers, transformed MDCK cells detached from the substratum and developed multilayers. Morphological analysis of the multilayers revealed that oncogene expression perturbed the polarized organization of MDCK cells such that the transformed cells lacked an apical--basal axis around which the cytoplasm is normally organized. Evidence for selective disruption of apical membrane polarity was provided by immunolocalization of membrane proteins; a normally apical 114-kD protein was randomly distributed on the cell surface in the transformed cell line, whereas normally basolateral proteins remained exclusively localized to areas of cell contact and did not appear on the free cell surface. The discrete distribution of the tight junction-associated ZO-1 protein as well as transepithelial resistance and flux measurements suggested that tight junctions were also assembled. These findings indicate that v-K-ras transformation alters cell-substratum and cell-cell interactions in MDCK cells. Furthermore, v-K-ras expression perturbs apical polarization but does not interfere with the development of a basolateral domain, suggesting that apical and basolateral polarity in epithelial cells may be regulated independently.  相似文献   

15.
M. Whitear    E. B. Lane 《Journal of Zoology》1983,199(3):345-358
Polyvillous cells are differentiated bipolar cells in the epidermis of Lampetra spp., which are not innervated and are interpreted as a type of ionocyte. They bear numerous apical microvilli, capped by mucus. In some examples the apex bulges at the surface of the epidermis, in others it is sunken into a crypt or may even appear to be internal to the cell. It is supposed that these variations correlate with the maturity of the individual cell. Cytological features aiding recognition of the polyvillous cells by electron microscopy are the presence of numerous membrane fragments in the secretion above the short irregular apical microvilli, coated apical invaginations or vesicles, mitochondria with well developed cristae and internal granules, and in many cases a plasma membrane which appears more electrondense than that of the neighbouring epithelial cells  相似文献   

16.
The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.  相似文献   

17.
Breast cancer nuclei have highly irregular shapes, which are diagnostic and prognostic markers of breast cancer progression. The mechanisms by which irregular cancer nuclear shapes develop are not well understood. Here we report the existence of vertical, apical cell protrusions in cultured MDA-MB-231 breast cancer cells. Once formed, these protrusions persist over time scales of hours and are associated with vertically upward nuclear deformations. They are absent in normal mammary epithelial cells (MCF-10A cells). Microtubule disruption enriched these protrusions preferentially in MDA-MB-231 cells compared with MCF-10A cells, whereas inhibition of nonmuscle myosin II (NMMII) abolished this enrichment. Dynamic confocal imaging of the vertical cell and nuclear shape revealed that the apical cell protrusions form first, and in response, the nucleus deforms and/or subsequently gets vertically extruded into the apical protrusion. Overexpression of lamin A/C in MDA-MB-231 cells reduced nuclear deformation in apical protrusions. These data highlight the role of mechanical stresses generated by moving boundaries, as well as abnormal nuclear mechanics in the development of abnormal nuclear shapes in breast cancer cells.  相似文献   

18.
Macrostomid flatworms represent a group of basal bilaterians with primitive developmental and morphological characteristics. The species Macrostomum sp., raised under laboratory conditions, has a short generation time of about 2–3 weeks and produces a large number of eggs year round. Using live observation, histology, electron microscopy and immunohistochemistry we have carried out a developmental analysis of Macrostomum sp. Cleavage (stages 1–2) of this species follows a modified spiral pattern and results in a solid embryonic primordium surrounded by an external yolk layer. During stage 3, cells at the anterior and lateral periphery of the embryo evolve into the somatic primordium which gives rise to the body wall and nervous system. Cells in the center form the large yolk-rich gut primordium. During stage 4, the brain primordium and the pharynx primordium appear as symmetric densities anterior-ventrally within the somatic primordium. Organ differentiation commences during stage 5 when the neurons of the brain primordium extend axons that form a central neuropile, and the outer cell layer of the somatic primordium turns into a ciliated epidermal epithelium. Cilia also appear in the lumen of the pharynx primordium, in the protonephridial system and, slightly later, in the lumen of the gut. Ultrastructurally, these differentiating cells show the hallmarks of platyhelminth epithelia, with a pronounced apical assembly of microfilaments (terminal web) inserting at the zonula adherens, and a wide band of septate junctions underneath the zonula. Terminal web and zonula adherens are particularly well observed in the epidermis. During stage 6, the somatic primordium extends around the surface dorsally and ventrally to form a complete body wall. Muscle precursors extend myofilaments that are organized into a highly regular orthogonal network of circular, diagonal and longitudinal fibers. Neurons of the brain primordium differentiate a commissural neuropile that extends a single pair of ventro-lateral nerve trunks (the main longitudinal cords) posteriorly. The primordial pharynx lumen fuses with the ventral epidermis anteriorly and the gut posteriorly, thereby generating a continuous digestive tract. The embryo adopts its final shape during stages 7 and 8, characterized by the morphallactic lengthening of the body into a U-shaped form and the condensation of the nervous system.Edited by J. Campos-Ortega  相似文献   

19.
A short-chain analogue of galactosylceramide (6-NBD-amino-hexanoyl- galactosylceramide, C6-NBD-GalCer) was inserted into the apical or the basolateral surface of MDCK cells and transcytosis was monitored by depleting the opposite cell surface of the analogue with serum albumin. In MDCK I cells 32% of the analogue from the apical surface and 9% of the analogue from the basolateral surface transcytosed to the opposite surface per hour. These numbers were very similar to the flow of membrane as calculated from published data on the rate of fluid-phase transcytosis in these cells, demonstrating that C6-NBD-GalCer acted as a marker of bulk membrane flow. It was calculated that in MDCK I cells 155 microns membrane transcytosed per cell per hour in each direction. The fourfold higher percentage transported from the apical surface is explained by the apical to basolateral surface area ratio of 1:4. In MDCK II cells, with an apical to basolateral surface ratio of 1:1, transcytosis of C6-NBD-GalCer was 25% per hour in both directions. Similar numbers were obtained from measuring the fraction of endocytosed C6-NBD-GalCer that subsequently transcytosed. Under these conditions lipid leakage across the tight junction could be excluded, and the vesicular nature of lipid transcytosis was confirmed by the observation that the process was blocked at 17 degrees C. After insertion into one surface of MDCK II cells, the glucosylceramide analogue C6-NBD-GlcCer randomly equilibrated over the two surfaces in 8 h. C6-NBD-GalCer and -GlcCer transcytosed with identical kinetics. Thus no lipid selectivity in transcytosis was observed. Whereas the mechanism by which MDCK cells maintain the different lipid compositions of the two surface domains in the absence of lipid sorting along the transcytotic pathway is unclear, newly synthesized C6-NBD-GlcCer was preferentially delivered to the apical surface of MDCK II cells as compared with C6-NBD-GalCer.  相似文献   

20.
Embryonic ectodermal cells of rat embryos were examined by light and electron microscopy during the early stage of neurulation. Before the onset of neurulation (day 9–6 hr embryos), the cells underwent certain characteristic ultrastructural changes; that is, apical cytoplasmic protrusions and free spherules appeared, numerous vacuoles were formed in the cytoplasm, mitochondria showed ballooning, and the endoplasmic reticulum became dilated. The amniotic cells derived from the embryonic ectoderm exhibited the same ultrastructural changes, but those from the extraembryonic mesoderm did not. Embryonic mesodermal cells and neuroectodermal cells also did not show these changes. In the middle stage of neurulation (day 9–12 hr embryos), the embryonic ectodermal cells and the amniotic cells derived from the embryonic ectoderm assumed a flat squamous shape. None of the ultrastructural changes observed in day 9–6 hr embryos were noted in these cells. The functional significance of the production of apical cytoplasmic protrusions and free spherules in the embryonic ectodermal cells and amniotic cells is discussed in relation to similar phenomena reported to occur in other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号