首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
Cellulase (β-1, 4-glucan-glucanohydrolase EC 3.2.1.4) activity in the abscission zone of red kidney bean (Phaseolus vulgaris) was previously shown to exist in at least two different molecular forms. The form of the enzyme which has an isoelectric point of 4.5 is present in both abscising and nonabscising tissue and requires grinding for extraction. Another form of the enzyme which has an isoelectric point of 9.5 is present only in tissue in which the abscission process has been induced. Further, much of this form of cellulase can be removed from the tissue by vacuum infiltration with buffer. Time course studies indicate that while the increase in measurable cellulase activity in tissue which is actively undergoing abscission was due primarily to the appearance of cellulase 9.5, this form of the enzyme cannot be removed by vacuum infiltration until after the breakstrength of the abscission zone has decreased nearly to zero. The intracellular localization of these two forms of cellulase is discussed.  相似文献   

2.
Abstract The wheat germ translation system was programmed with soluble RNA extracted from foliar abscission zones of Phaseolus vulgaris, These extracts were taken at various times after the induction of abscission. A translation product with a molecular weight of 42 kilodalton (kD) was only present after this treatment, though three other species 32, 27 and 17 kD increased substantially. The isozyme of cellulase with a pi of 9.5 could not be conclusively identified amongst the products though the 32 kD protein is probably chitinase. Comparison of the abscission zone translatable RNA with that from adjacent petiole and stem tissues showed the 17 kD protein developed in all these location. The 42, 32 and 27 kD bands were found predominantly in the zone and petiole.  相似文献   

3.
The purification of a cellulase isoenzyme with a pI of 9.5 from kidney bean abscission zones is described. An important step in the purification involved the adsorption of the cellulase isoenzyme onto an affinity column of CF-11 cellulose and the subsequent elution with cellobiose. Native and SDS polyacrylamide gel electrophoresis established that there was only one component in the purified cellulase samples. Antibodies raised against the purified pI 9.5 cellulase precipitated this isoenzyme from crude or purified solutions but did not cross react with pI 4.5 cellulase from 2,4-D-treated abscission zones. The antibody was shown to be monospecific by immunoelectrophoresis and by the fact that it precipitated only a single 14C-labeled protein from an abscission zone extract heavily labeled with 14C amino acids.  相似文献   

4.
Only one form of membrane-associated cellulase was found previously in the lower petiolar pulvinus of Phaseolus vulgaris (cv Red Kidney). The cellulase has an isoelectric point (pI) of 4.5 (DE Koehler, LN Lewis 1979 Plant Physiol 63: 677-679). This enzyme was detected in abscission zones collected before the onset of abscission (control tissue), and was thought to represent a pre-secretory form of another cellulase, the abscission cellulase, which has a basic pI and is secreted during abscission. We now show that this acidic, membrane-associated cellulase is a glycoprotein, tightly bound to the membrane, with maximum activity at pH 5.1, and that it is not immunologically related to the abscission cellulase. Furthermore, when bean explants are induced to abscise with ethylene, the activity of the acidic cellulase declines rapidly to 50% of control levels in the first day. When abscission is fully developed, the membranes contain a basic form of cellulase with a pI of 8.0 to 9.0 and only trace levels of the acidic cellulase. The basic form is not a high mannose glycoprotein; it has maximum activity in a broad pH range (4.0-8.0) and is antigenically related to the abscission cellulase, which is induced during abscission and transported to the cell wall. Antibody raised against the abscission cellulase recognized two proteins in a crude membrane fraction from abscising tissue. One of those proteins comigrated with the abscission cellulase, and the other was 1 to 2 kilodaltons larger. Thus, during abscission, the acidic membrane-associated cellulase rapidly declines before the appearance of the abscission cellulase. We conclude that there is no conversion from the acidic cellulase to the basic cellulase and suggest that the acidic and basic cellulase isoenzymes are proteins derived from two different genes.  相似文献   

5.
A fundamental event in abscission is the breakdown of cell wall material in a discrete zone of cells known as the separation layer. Three dimensional images produced by viewing tissue prints of abscission zones on nitrocellulose (NC) membranes with incident illumination showed changes in the tissue integrity taking place in the separation layer as the process of abscission proceeded. The cell softening which occurs due to the dissolution of the cell wall appeared in the tissue prints as a diffuse line at the anatomical transition between the pulvinus and petiole and was easily observed on NC tissue prints of either longitudinal or serial cross-sections through abscission zones. In bean leaf abscission the dissolution of cell walls has been correlated with the appearance of a form of cellulase with an isoelectric point of pH 9.5. Antibodies specific for this enzyme were used to study the localization of 9.5 cellulase in the distal abscission zone of Phaseolus vulgaris L., cv Red Kidney after tissue printing on NC. It was found that 9.5 cellulase was localized in the separation layer but also occurred in the vascular tissue of the adjacent pulvinus. No antibody binding was observed in nonabscising tissue or preimmune controls. These results confirm previous biochemical studies and demonstrate that immunostaining of nitrocellulose tissue prints is a fast and reliable method to localize proteins or enzymes in plant tissue.  相似文献   

6.
Nitrocellulose tissue prints immunoblotted with 9.5 cellulase antibody were used to demonstrate areas of cellulase localization within Phaseolus vulgaris explants on exposure to ethylene. The 9.5 cellulase was induced in the distal and proximal abscission zone and in the stem. In both abscission zones, the 9.5 cellulase was found in the cortical cells of the separation layer, which develops as a narrow band of cells at the place where fracture occurs. The enzyme was also found associated with the vascular traces of the tissues adjacent to the separation layer extending through the first few millimeters at each side of the separation layer. The two abscission zones differed in the way that cellulase distributed through the separation layer as abscission proceeded. In the distal zone, cellulase appeared first in the cells of the separation layer adjacent to vascular traces and extended toward the periphery. In the proximal zone, 9.5 cellulase accumulated first in the cortical cells that lie in the adaxial side and then extended to the abaxial side. In response to ethylene, 9.5 cellulase was also induced in the vascular traces of the stem and the pulvinus without developing a separation layer. The role of 9.5 cellulase in the vascular traces is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified the same 51-kilodalton protein in both abscising and nonabscising tissues. Therefore, the determinant characteristic of the abscission process is the induction of 9.5 cellulase by cortical cells in the separation layer, and this implies that these cells have a unique mechanism for initiating 9.5 cellulase synthesis.  相似文献   

7.
8.
The occurrence of enzymes associated with bean leaf abscission was investigated in bean (Phaseolus vulgaris) flower reproductive organs in which catabolic cell wall events are essential during anther and pistil development. Cellulase activity was detected in high levels in both pistil and anthers of bean flowers before anthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified a protein in anthers and pistil with the same size (51 kilodaltons) and serologically closely related to the abscission cellulase. The accumulation of 9.5 cellulase protein in the anther is developmentally regulated and increases from undetectable levels at very young stages of anther development to high levels as the anther matures. In the pistil, the 9.5 cellulase was localized in the upper part of the pistil where the stigma and the stylar neck reside and was detected in the youngest developmental stage analyzed. Antibodies against basic chitinase, which accumulates to high levels in abscission zones after exposure to ethylene, identified a protein with the same size (33 kilodaltons) and serologically closely related, in both anthers and upper portion of the pistil. In contrast, a 45-kilodalton protein and the basic β-1,3-glucanase associated with abscission were undetected in bean reproductive organs. Interestingly, β-1,3-glucanase activity was detected in young bean anthers and decreased at anthesis, but the anther β-1,3-glucanase is serologically unrelated to the basic β-1,3-glucanase. Thus, it appears that the basic cellulase and chitinase occur in combination in many plant processes that require major cell wall disruption, whereas hemicellulases such as β-1,3-glucanase are specific to each process.  相似文献   

9.
Cellulase expressions in a normal shedding wild-type and a non-abscinding single gene mutant of Lupinus angustifolius have been studied during ethylene treatments of leaf abscission zone explants. Of the range of different glycohydrolases investigated only the abscission cell-specific beta-1,4-glucanhydrolase (cellulase) was not produced in the non-abscinding mutant. An endo-polygalacturonase was induced equally in both wild-type and mutant and other glycohydrolases were equally up-regulated. The abscission cell-specific cellulase induced at shedding of wild-type is antigenically similar to the Phaseolus vulgaris induced leaf abscission pI 9.5 cellulase but with a higher molecular mass (50 kD compared with 48 kD) and like the bean abscission-specific cellulase that of lupin is not glycosylated. Causes of the loss of function of cellulase expression in the non-shedding mutant are discussed.  相似文献   

10.
Differential ethylene-inducible expression of cellulase in pepper plants   总被引:1,自引:0,他引:1  
Ethylene promotes the abscission of leaves and the ripening of fruits in pepper plants, and in both events an increase in cellulase activity is observed. However, two enzyme isoforms (pI 7.2 and 8.5, respectively) are differentially involved in the two physiological phenomena. The pI 8.5 form has been purified from ripe fruits. It is a glycoprotein with an apparent molecular mass of 54 kDa. Two short peptides were sequenced and a very high homology to a tomato cellulase was observed. Polyclonal antibodies, raised against the purified enzyme, have allowed us to demonstrate that the observed ethylene-induced increase in cellulase activity is paralleled by de novo synthesis of protein. Three cDNAs (CX1, CX2 and CX3), encoding different cellulases, were obtained and characterized and their expression investigated. Accumulation of all three mRNAs is induced by ethylene treatment, though to different levels. CX1 is mainly expressed in ripe fruits while CX2 is especially found in abscission zones. CX3 accumulates at very low levels in activated abscission zones. Comparisons with other known cellulases demonstrate clear heterogeneity within the higher plant cellulases. Differences in ethylene inducibility and molecular structure suggest different physiological roles for cellulase in pepper plants.This paper is dedicated to Prof. G. Dall'Olio on the occasion of his 70th birthday.  相似文献   

11.
When abscission in leaf explants from Phaseolus vulgaris, cultivar Red Kidney, was allowed to proceed while the explants were in 2H2O, a 1.25% increase in the buoyant density of cellulase in a cesium chloride gradient was observed. These data indicate that the increase in cellulase activity during abscission is a result of the synthesis of new protein. Two differentially soluble forms of cellulase are present in the abscission zone. The form which is soluble only in a high salt buffer seems more closely related to the abscission process than the form which is soluble in dilute buffer. The correlation between changes in pull force and increase in cellulase activity and the effects of several hormones on cellulase activity are discussed.  相似文献   

12.
The activity of cellulase, cellulase-isoenzymes and polygalacturonase (PG) in the shoot/peduncle and calyx abscission zones (AZ-A and AZ-C, respectively) of young and mature Shamouti orange (Citrus sinensis (L.) Osbeck) fruit explants was tested after extraction of total enzymes from either exo- or endo-cellular fractions from fruits treated with ethylene or 2,4-D. Ethylene enhanced and 2,4-D delayed both abscission and the activity of exo- and endo-cellular cellulase and PG. When tested separately in the exo- and endo-cellular fraction, the effects of both growth regulators on the activity of almost all cellulase isoenzymes were similar, irrespective of their location in the tissue. In mature fruits no abscission occurred in AZ-A, and yet the activity of cellulase and PG was regulated by the hormones as in abscising AZs. This was also true for total activity of exo- and endo-cellular cellulase and PG. Similar effects were observed when the activity of cellulase isoenzymes was tested in AZ-A of non-abscising mature fruits. It is suggested that whenever the increase in activity of the hydrolytic enzymes, and especially cellulase, is not followed by abscission, the substrate is either immune or not available to the enzymes.  相似文献   

13.
A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45 kilodalton polypeptide, but polyclonal antibodies against the 45 kilodalton protein recognized chitinase weakly. When abscission was inhibited by addition of indoleacetic acid, the accumulation of the 45 kilodalton protein was strongly inhibited (80%). This result suggests that the 45 kilodalton polypeptide may play a more direct role in abscission.  相似文献   

14.
The role of ethylene and 2,4-D in the abscission process, and the induction of cellulase isoenzymes in the abscission zones of Citrus fruit at two physiological stages of fruit development, were studied using a new staining technique for the detection of cellulase isoenzymes in polyacrylamide gels following electrophoretic separation. Four to seven isoenzymes were detected in the shoot-peduncle (zone A) and peduncle-fruit (zone C) abscission zones; at least two of them could be detected at excision time, and of these at least one could not be connected with abscission. In the young fruit, ethylene enhanced and 2,4-D delayed both abscission and the formation of several isoenzymes. In the older fruit, ethylene enhanced and 2,4-D delayed the formation of isoenzymes at a time where no abscission occurred any more in zone A. A slower but significant increase in most of the isoenzyme activity detected was also observed in abscission zone A of untreated older fruit explants after excision. These results fully agree with those reported earlier in relation to total cellulase and polygalacturonase activity (Greenberg et al., Physiol. Plant. 34: 1, 1975) tested at the same stages of fruit development. It is suggested, that the generality of the concept that a rise in hydrolytic enzymes in the abscission zone is necessarily followed by separation of the organ should be re-evaluated.  相似文献   

15.
Phenolic compounds appear to be involved in a number of regulatoryactivities in plants. During the last decade an increasing amountof evidence has brought to light the role played by salicylicacid in a number of physiological processes. Particularly interestingis the inhibitory effect of salicylic acid on ethylene biosynthesis,which might make this natural plant compound a useful tool forcontrolling some of the responses usually promoted by ethylene.Our data show that salicylic acid is actually able to reduceleaf abscission in both peach and pepper plants. Biochemicalanalyses have revealed that the enzyme usually involved in thisphenomenon (cellulase, EC 3.2.1.4 [EC] .) does not increase followingactivation of leaf abscission in plants treated with salicylicacid. In contrast, control plants show a marked increase inthe levels of both enzyme activity and cellulase protein. Flushingplants with exogenous ethylene in the presence of salicylicacid induces an increase in cellulase expression which, however,does not equal the level induced in plants without salicylicacid. Key words: Cellulase, leaf abscission, peach, pepper, salicylic acid  相似文献   

16.
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.  相似文献   

17.
18.
Treatment with dimethipin (2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4 tetroxide) inhibited the increase in cellulase activity and decrease in breakstrength associated with the normal course of abscission in Coleus. Application of the surfactant UBI-1126 (Emery OAL 20 in isopropyl alcohol) increased cellulase activity and accelerated the process of abscission in Coleus expiants within 24 h of application. Cellulase activity was localized histochemically at the electron microscopic level in surfactant-treated tissue. The enzyme activity was localized primarily in the cell wall, middle lamella, and paramural bodies of abscission zone cells.  相似文献   

19.
Activities of degrading enzymes, hormones concentration and zymogram patterns were investigated during control and ethylene-induced abscission of tomato pedicel explants. Exogenous ethylene accelerated abscission of pedicel explants. It was showed that IAA concentration in abscission zone tended to decline at first and then was reduced before separation in control and ethylene-treatment. Moreover, IAA (indole acetic acid) and ABA (abscise acid) concentrations were elevated in each segment when exposing to ethylene, but GA1 + 3 (gibberellin1 + gibberellin3) concentration was decreased in abscission zone and the proximal side. Activities of cellulase, polygalacturonase and pectinesterase in the explants were induced in the separating process and strengthened by ethylene. However, comparing with the proximal side, cellulase and polygalacturonase activities in abscission zone and distal side were higher. Electrophoresis of isozymes revealed that at least three peroxidase and three superoxidase isozymes appeared in the explants, respectively. One peroxidase isozyme exhibited differentially among the three positions in control and ethylene-treatment. One esterase isozyme weakened or disappeared in the following hours, but three novel esterase isozymes were detectable from beginning of the process. The data presented support the hypothesis that the distal side, together with abscission zone of explants plays a more important role in separation than does the proximal side. The possible roles of degrading enzymes, hormones and isozymes in three segments during ethylene-induced abscission of tomato pedicel explants are discussed.  相似文献   

20.
A. R. Sheldrake 《Planta》1970,95(2):167-178
Summary Homogenates of differentiating xylem and phloem tissue have higher cellulase activities than cambial samples; the highest activity is always found in phloem. Callus tissue, in which no vascular differentiation occurs, contains only low cellulase activity. The results suggest that cellulase is involved in vascular differentiation. Different pH optima of cellulase activity were found: in cambium, xylem and phloem tissue, cellulase activity with an optimum at about pH 5.9 is predominantly membrane-bound; it is sedimentable at 100,000 g and releasable by Triton X-100. The same may be true of activity with an optimum at pH 5.3. Phloem tissue also contains a soluble, cytoplasmic cellulase of high activity at pH 7.1, and xylem tissue contains cytoplasmic cellulase with an optimum at pH 6.5. Low cellulase activity with a pH optimum similar to that of xylem homogenates was found in xylem sap. Cellulase activity in abscission zones increases greatly just before leaf abscission. Abscission zone cellulase has two pH optima, et 5.3 and 5.9; both activities are increased by Triton treatment of homogenates. The possible existence of several different cellulases forming part of a cellulase complex, and the rôle of the enzymes in hydrolysing wall material during cell differentiation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号