首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurotoxic amyloid-β-peptide (Aβ) is important in the pathogenesis of Alzheimer's disease (AD). Calpain (Ca2+-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in AD/Aβ toxicity. We previously found that Aβ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. We now report on the previously unrecognized caspase-8 activation by calpain. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the Aβ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the Aβ-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase-8, and CD95 pathway in AD/Aβ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.  相似文献   

2.
Caspase activation resulting from cytochrome c release from the mitochondria is an essential component of the mechanism of apoptosis initiated by a range of factors. The activation of Bid by caspase-8 in this pathway promotes further cytochrome c release, thereby completing a positive feedback loop of caspase activation. Although the identity of the caspases necessary for caspase-8 activation in this pathway are known, it is still unclear which protease directly cleaves caspase-8. In order to identify the factor responsible we undertook a biochemical purification of caspase-8 cleaving activity in cytosolic extracts to which cytochrome c had been added. Here we report that caspase-6 is the only soluble protease in cytochrome c activated Jurkat cell extracts that has significant caspase-8 cleaving activity. Furthermore the caspase-6 that we purified was sufficient to induce Bid dependent cytochrome c releasing activity in cell extracts. Inhibition of caspase-6 activity in cells significantly inhibited caspase-8 cleavage and apoptosis, therefore establishing caspase-6 as a major activator of caspase-8 in vivo and confirming that this pathway can have a critical role in promotion of apoptosis. We also show that caspase-6 is inactive until the short prodomain is removed. We suggest that the requirement for two distinct cleavage steps to activate an effector caspase may represent an effective mechanism for restriction of spontaneous caspase activation and aberrant entry into apoptosis.  相似文献   

3.
Barnoy S  Kosower NS 《FEBS letters》2003,546(2-3):213-217
Previously, we found that calpastatin diminished transiently prior to myoblast fusion (rat L8 myoblasts), allowing calpain-induced protein degradation, required for fusion. Here we show that the transient diminution in calpastatin is due to its degradation by caspase-1. Inhibition of caspase-1 prevents calpastatin diminution and prevents myoblast fusion. Caspase-1 activity is transiently increased during myoblast differentiation. Both calpain and caspase appear to be responsible for the fusion-associated membrane protein degradation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in L8 myoblast fusion represents a novel function for this caspase in a non-apoptotic differentiation process, and points to cross-talk between the calpain and caspase systems in some differentiation processes.  相似文献   

4.
Neuronal cell death after traumatic brain injury, Alzheimer’s disease and ischemic stroke may in part be mediated through endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR results in induction of molecular chaperone GRP78 and the ER-resident caspase-12, whose activation has been proposed to be mediated by calpain and caspase processing, although their relative contribution remains unclear. In this study we induced ER stress with thapsigargin (TG), and determined the activation profile of calpain-2, caspase-3, caspase-7, and caspase-12 by analyses of protein levels, corresponding substrates and breakdown products (BDP). Specific calpain and caspase activity was assessed by analysis of αII-spectrin BDP of 145 kDa (SBDP145), BDP of 150 kDa (SBDP150) and BDP of 120 kDa (SBDP120). Decrease in pro-calpain-2 protein and increased SBDP145 levels by 3 h after TG treatment indicated early calpain activity. Active caspase-7 (p20) increase occurred after 8 h, followed by concomitant up-regulation of active caspase-3 and SBDP120 after 24 h. In vitro digestion experiments supported that SBDP120 was exclusively generated by active caspase-3 and validated that kinectin and co-chaperone p23 were calpain and caspase-7 substrates, respectively. Pro-caspase-12 protein processing by the specific action of calpain and caspase-3/7 was observed in a time-dependent manner. N-terminal pro-domain processing of pro-caspase-12 by calpain generated a 38 kDa fragment, while caspase-3/7 generated a 35 kDa fragment. Antibody developed specifically against the caspase-3/7 C-terminal cleavage site D341 detected the presence of large subunit (p20) containing 23 kDa fragment that increased after 24 h of TG treatment. Significant caspase-12 enzyme activity was only detected after 24 h of TG treatment and was completely inhibited by caspase 3/7 inhibitor DEVD-fmk and partially by calpain inhibitor SNJ-1945. ER-stress-induced cell death pathway in TG-treated PC12 cells was characterized by up-regulation of GRP-78 and processing and activation of caspase-12 by the orchestrated proteolytic activity of calpain-2 and caspase-3/7.  相似文献   

5.
Previously, we have found that caspase-1 activity is increased during myoblast differentiation to myotubes. Here we show that caspase-1 activity is required for PC12 differentiation to neuronal-like cells. Caspase-1 is shown to be activated (by immunoblotting and by assessing activity in cell extracts) in the PC12 cells following the initial stage of differentiation. The inhibition of caspase-1 arrests PC12 cells at an intermediate stage of differentiation and prevents neurite outgrowth in these cells; the inhibition is reversed upon the removal of the inhibitor. Calpastatin (calpain endogenous specific inhibitor, and a known caspase substrate) is diminished at the later stages of PC12 cell differentiation, and diminution is prevented by caspase-1 inhibition. The degradation of fodrin (a known caspase and calpain substrate) is found in the advanced stage of differentiation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in two distinct differentiation processes (myoblast fusion and neuronal differentiation of PC12 cells) indicates a function for this caspase in differentiation processes, and suggests some common mechanisms underlying caspase roles in such processes.  相似文献   

6.
Endoplasmic reticulum (ER) stress activates caspase-12 in murine cells, triggering the ER stress-specific cascade for implementation of apoptosis. In C2C12 murine myoblast cells, activation of the cascade occurs without release of cytochrome c from mitochondria, suggesting that the cascade is independent of mitochondrial damage. Stable overexpression of Bcl-xL in C2C12 cells suppressed activation of caspase-12 and apoptosis. In ER-stressed cells, but not in normal cells, Bcl-xL was co-immunoprecipitated with Bim, a pro-apoptotic member of the Bcl-2 family, suggesting that Bcl-xL sequesters Bim, thereby inhibiting the apoptotic signaling. Fractionation of C2C12 cells revealed that ER stress led to translocation of Bim from a dynein-rich compartment to the ER, while stable overexpression of Bcl-xL suppressed accumulation of Bim on the ER. Although the toxic effect of Bim had been previously observed only at the mitochondrial outer membrane, overexpression of a Bim derivative, Bim(ER), targeted at the surface of the ER led to apoptosis. A C2C12 transfectant overexpressing the caspase-12 suppressor protein was resistant to Bim(ER), suggesting that the toxic effect of Bim on the ER is dependent on activation of caspase-12. Knockdown of Bim by RNA interference provided cells resistant to ER stress. These results suggest that translocation of Bim to the ER in response to ER stress is an important step toward activation of caspase-12 and initiation of the ER stress-specific caspase cascade.  相似文献   

7.
Ethanol administration during the rat brain growth spurt triggers apoptotic neurodegeneration that appears to be mediated by caspase-3 activation. In order to gain more insight on the role of this caspase in ethanol-induced developmental neurotoxicity, we studied its expression and activity under different conditions of ethanol exposure during development. Furthermore, because of the cross-talk between caspase-3 and calpain we extended our study also at this protease. Ethanol was administered by gavage to rat pups as a single-day exposure on postnatal day (PN) 7 or from PN4 to PN10. Cleaved caspase-3 expression peaked in the cerebral cortex 12 h after ethanol treatment and returned to control values at 24 h. An identical pattern was found for caspase-3-like activity, that was increased only with the highest dose of ethanol tested (5 g/kg) and mostly in PN4. Repeated ethanol exposure, at a dose that was previously found to induce microencephaly, did not increase caspase-3 expression and activity although it decreased procaspase-3 expression and released mitochondrial cytochrome c. Repeated ethanol administration also increased calpain activity. These data show that acute and repeated ethanol administration differentially affect caspase-3 and calpain activity, suggesting that calpain activation may play a role in developmental neurotoxicity of ethanol.  相似文献   

8.
In the absence of costimulating signals, B cell receptor (BCR) crosslinking on immature B cells triggers the apoptotic cell death program. In the WEHI-231 B cell lymphoma model, anti-IgM crosslinking triggers activation of caspase-7 independently of caspase-8, followed by apoptosis. Two main mechanisms for caspase-7 activation have been proposed: (i) caspase-8 recruitment to death receptors (Fas or tumour necrosis factor); and (ii) changes in mitochondrial membrane permeability and cytochrome c release, which activate caspase-9. Here we report that caspase-7 activation induced by BCR crosslinking is independent of caspase-8 and cytochrome c translocation from mitochondria to the cytosol, as well as of mitochondrial depolarization. In addition, in a cell-free system, the S-100 fraction of anti-IgM-treated WEHI-231 cells induces a caspase activation pattern different from that activated by cytochrome c and dATP. We demonstrate that calpain specifically triggers activation and processing of caspase-7 both in vitro and in vivo, and that both processes are inhibited by calpain inhibitors. Furthermore, calpain activation is associated with decreased expression levels of calpastatin, which is upregulated by CD40 ligation. These data confirm a role for calpain during BCR crosslinking, which may be critical for cell deletion by apoptosis during B cell development and activation.  相似文献   

9.
TNF-alpha-mediated cardiomyocyte apoptosis involves caspase-12 and calpain   总被引:4,自引:0,他引:4  
Following ischemia-reperfusion, there is a sustained increase of TNF-alpha both locally in the heart as well as in circulating levels in blood. While TNF-alpha has been implicated in cardiomyocyte apoptosis which occurs in several cardiomyopathies, the molecular pathways by which TNF-alpha induces apoptosis in these cells are not fully elucidated. We investigated the role of the two families of cysteine proteases, caspases and calpains, which are known to participate in apoptotic cell death. The effect of the highly specific calpain inhibitor, Z-LLY-fmk, and the caspase pathways involved in TNF-alpha-mediated apoptosis of the HL-1 cardiomyocyte cell line were examined. Activation of the downstream caspase-3, and the cleavage of poly ADP-ribose polymerase (PARP) were observed in a time-dependent manner upon treatment with TNF-alpha. Caspase-12, but not caspase-9, was activated in response to TNF-stimulation, indicating that an endoplasmic reticulum (ER)/calcium-dependent pathway may be involved. In HL-1 cardiomyocytes, TNF-alpha-induced apoptosis appears to be mediated by calpain as apoptotic changes were abrogated in the presence of the highly specific calpain inhibitor, Z-LLY-fmk. In conclusion, our results suggest that TNF-alpha-mediated apoptosis in HL-1 cardiomyocytes follows the caspase-12 apoptotic pathway that involves calpain.  相似文献   

10.
Bcl-2 and its relative, Bcl-xL, inhibit apoptotic cell death primarily by controlling the activation of caspase proteases. Previous reports have suggested at least two distinct mechanisms: Bcl-2 and Bcl-xL may inhibit either the formation of the cytochrome c/Apaf-1/caspase-9 apoptosome complex (by preventing cytochrome c release from mitochondria) or the function of this apoptosome (through a direct interaction of Bcl-2 or Bcl-xL with Apaf-1). To evaluate this latter possibility, we added recombinant Bcl-xL protein to cell-free apoptotic systems derived from Jurkat cells and Xenopus eggs. At low concentrations (50 nM), Bcl-xL was able to block the release of cytochrome c from mitochondria. However, although Bcl-xL did associate with Apaf-1, it was unable to inhibit caspase activation induced by the addition of cytochrome c, even at much higher concentrations (1-5 microM). These observations, together with previous results obtained with Bcl-2, argue that Bcl-xL and Bcl-2 cannot block the apoptosome-mediated activation of caspase-9.  相似文献   

11.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

12.
Liu Y  Pu Y  Zhang X 《Journal of virology》2006,80(1):395-403
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X. Zhang, J. Virol. 77:11952-11963, 2003). Here we determined the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. We found that caspase-9 activity was 12-fold higher in virus-infected cells than in mock-infected cells at 24 h postinfection (p.i.). Pretreatment of cells with a caspase-9 inhibitor completely blocked caspase-9 activation and partially inhibited the apoptosis mediated by MHV infection. Analyses of cytochrome c release further revealed an activation of the mitochondrial apoptotic pathway. Stable overexpression of the two antiapoptotic proteins Bcl-2 and Bcl-xL significantly, though only partially, blocked apoptosis, suggesting that activation of the mitochondrial pathway is partially responsible for the apoptosis. To identify upstream signals, we determined caspase-8 activity, cleavage of Bid, and expression of Bax and Bad by Western blotting. We found a drastic increase in caspase-8 activity and cleavage of Bid at 24 h p.i. in virus-infected cells, suggesting that Bid may serve as a messenger to relay the signals from caspase-8 to mitochondria. However, treatment with a caspase-8 inhibitor only slightly blocked cytochrome c release from the mitochondria. Furthermore, we found that Bax but not Bad was significantly increased at 12 h p.i. in cells infected with both live and UV-inactivated viruses and that Bax activation was partially blocked by treatment with the caspase-8 inhibitor. These results thus establish the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis.  相似文献   

13.
Mitochondrial disruption during apoptosis results in the release of cytochrome c that forms apoptosomes with Apaf-1 and caspase-9. Activation of caspase-9 by dimerization in apoptosomes then triggers a caspase signaling cascade. In addition, other apoptosis signaling molecules released from the mitochondrion, such as apoptosis-inducing factor and endonuclease G, may induce caspase-9-independent apoptosis. To determine the signaling events induced by caspase-9, we used chemically induced dimerization for specific activation of caspase-9. We observed that caspase-9 dimerization resulted in the loss of mitochondrial membrane potential and the cleavage of anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1. Moreover, cleavage-resistant Bcl-2, Bcl-xL, or Mcl-1 potently inhibited caspase-9-dependent loss of mitochondrial membrane potential and the release of cytochrome c. Our data suggest that a caspase-9 signaling cascade induces feedback disruption of the mitochondrion through cleavage of anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1.  相似文献   

14.
The evidence implicating a mode of cell death that either favors or argues against caspase-dependent apoptosis is available in studies that used experimental models of Parkinson’s disease. We sought to investigate the mechanisms by which release of cytochrome c is not linked to caspase activation during rotenone-induced dopaminergic (DA) neurodegeneration. Unlike caspase activation in 6-hydroxydopamine-treated cells, both MN9D DA neuronal cells and primary cultures of mesencephalic neurons showed no obvious signs of caspase activation upon exposure to rotenone. We found that intracellular levels of ATP significantly decreased at the early phase of neurodegeneration (<~24 h) and therefore external addition of ATP to the lysates obtained at this stage reconstituted caspase-3 activity. At a later phase of cell death (>~24 h), both decreased levels of ATP and procaspase-9 contributed to the lack of caspase-3 activation. Under this condition, calpain and the proteasome system were responsible for the degradation of procaspase-9. Consequently, external addition of ATP and procaspase-9 to the lysates harvested at the later phase was required for activation of caspase-3. Similarly, caspase-3 activity was also reconstituted in the lysates harvested from cells co-treated with inhibitors of these proteases and incubated in the presence of external ATP. Taken together, our findings provided a sequential mechanism underlying how DA neurons may undergo caspase-independent cell death, even in the presence of cytoplasmic cytochrome c following inhibition of mitochondrial complex I.  相似文献   

15.
《Free radical research》2013,47(5):432-446
Abstract

Several studies have shown that oxidative stress induces apoptosis in many cellular systems including pancreatic acinar cells. However, the exact molecular mechanisms leading to apoptosis remain partially understood. This study aimed to investigate the role of the cytosolic cysteine protease calpain in H2O2-induced apoptosis in pancreatic AR42J cells. Apoptosis was evaluated using flow cytometric analysis of sub-G1 DNA populations, electron-microscopic analysis, caspase-3-specific αII-spectrin breakdown, and measuring the proteolytic activities of the initiator caspase-12 and caspase-8, and the executioner caspase-3. H2O2 induced an increase in the calpain proteolytic activity immediately after starting the experiments that tended to return to a nearly normal level after 8 h and could be attributed to m-calpain. Whereas no caspase-12, caspase-8 and caspase-3 activations could be detected within the first 0.5 h, significantly increased proteolytic activities were observed after 8 h compared with the control. At the same time, the cells showed first ultrastructural hallmarks of apoptosis and a decreased viability. In addition, αII-spectrin fragmentation was identified using immunoblotting that could be attributed to both calpain and caspase-3. Calpain inhibition reduced the activities of caspase-12, caspase-8, and caspase-3 leading to a decrease in the number of apoptotic cells. Immunoblotting analyses of caspase-12 and caspase-8 indicate that calpain may be involved in the activation process of both proteases. The results suggest that H2O2-induced apoptosis of AR42J cells requires activation of m-calpain initiating the endoplasmic reticulum stress-induced caspase-12 pathway and a caspase-8-dependent pathway. The findings also suggest that calpain may be involved in the execution phase of apoptosis.  相似文献   

16.
Bcl-2 regulates amplification of caspase activation by cytochrome c   总被引:10,自引:0,他引:10  
Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  相似文献   

17.
Activation of 'initiator' (or 'apical') caspases-2, -8 or -9 (refs 1-3) is crucial for induction of apoptosis. These caspases function to activate executioner caspapses that, in turn, orchestrate apoptotic cell death. Here, we show that a cell-permeable, biotinylated pan-caspase inhibitor (bVAD-fmk) both inhibited and 'trapped' the apical caspase activated when apoptosis was triggered. As expected, only caspase-8 was trapped in response to ligation of death receptors, whereas only caspase-9 was trapped in response to a variety of other apoptosis-inducing agents. Caspase-2 was exclusively activated in heat shock-induced apoptosis. This activation of caspase-2 was also observed in cells protected from heat-shock-induced apoptosis by Bcl-2 or Bcl-xL. Reduced sensitivity to heat-shock-induced death was observed in caspase-2(-/-) cells. Furthermore, cells lacking the adapter molecule RAIDD failed to activate caspase-2 after heat shock treatment and showed resistance to apoptosis in this setting. This approach unambiguously identifies the apical caspase activated in response to apoptotic stimuli, and establishes caspase-2 as a proximal mediator of heat shock-induced apoptosis.  相似文献   

18.
Two cysteine protease families, caspase and calpain, are known to participate in cell death. We investigated whether a stress-specific protease activation pathway exists, and to what extent Bcl-2 plays a role in preventing drug-induced protease activity and cell death in a dopaminergic neuronal cell line, MN9D. Staurosporine (STS) induced caspase-dependent apoptosis while a dopaminergic neurotoxin, MPP(+) largely induced caspase-independent necrotic cell death as determined by morphological and biochemical criteria including cytochrome c release and fluorogenic caspase cleavage assay. At the late stage of both STS- and MPP(+)-induced cell death, Bax was cleaved into an 18-kDa fragment. This 18-kDa fragment appeared only in the mitochondria-enriched heavy membrane fraction of STS-treated cells, whereas it was detected exclusively in the cytosolic fraction of MPP(+)-treated cells. This proteolytic cleavage of Bax appeared to be mediated by calpain as determined by incubation with [(35)S]methionine-labelled Bax. Thus, cotreatment of cells with calpain inhibitor blocked both MPP(+)- and STS-induced Bax cleavage. Intriguingly, overexpression of baculovirus-derived inhibiting protein of caspase, p35 or cotreatment of cells with caspase inhibitor blocked STS- but not MPP(+)-induced Bax cleavage. This appears to indicate that calpain activation may be either dependent or independent of caspase activation within the same cells. However, cotreatment with calpain inhibitor rescued cells from MPP(+)-induced but not from STS-induced neuronal cell death. In these paradigms of dopaminergic cell death, overexpression of Bcl-2 prevented both STS- and MPP(+)-induced cell death and its associated cleavage of Bax. Thus, our results suggest that Bcl-2 may play a protective role by primarily blocking drug-induced caspase or calpain activity in dopaminergic neuronal cells.  相似文献   

19.
Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号