首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

2.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

3.
Highly differentiated, heteromorphic ZZ female symbol /ZW male symbol sex chromosomes were found in the karyotypes of the neotropical leptodactylid frogs Eleutherodactylus euphronides and E. shrevei. The W chromosomes are the largest heterochromatic, female-specific chromosomes so far discovered in the class Amphibia. The analyses of the banding patterns with AT- and GC base-pair specific fluorochromes show that the constitutive heterochromatin in the giant W chromosomes consists of various categories of repetitive DNA sequences. The W chromosomes of both species are similar in size, morphology and banding patterns, whereas their Z chromosomes exhibit conspicuous differences. In the cell nuclei of female animals, the W chromosomes form very prominent chromatin bodies (W chromatin). DNA flow cytometric measurements demonstrate clear differences in the DNA content of male and female erythrocytes caused by the giant W chromosome, and also shows that these Eleutherodactylus genomes are among the smallest of all amphibian genomes. The importance of the heteromorphic ZW sex chromosomes for the study of Z-linked genes, the similarities and differences of the two karyotypes, and the significance of the exceptionally small genomes are discussed.  相似文献   

4.
The karyotype of the marsupial frog Gastrotheca riobambae is characterized by exceptionally highly differentiated XY/XX sex chromosomes. The 18S and 28S ribosomal RNA genes were found only in the nucleolus organizer region (NOR) of the X chromosome by in situ hybridization, silver staining and mithramycin banding. This amphibian species therefore exhibits a sex-specific difference in the number of ribosomal RNA genes of about 2()1(). This constitutes an extremely rare situation in the karyotype of vertebrates. Examination of various somatic tissues from female animals showed that the NORs on both X chromosomes are always active. The results are discussed in relation to the apparent absence of dosage compensation for sexlinked genes in the Amphibia.  相似文献   

5.
I. Miura 《Chromosoma》1995,103(8):567-574
Late replication banding and C-banding analyses were performed on the metaphase chromosomes of six species and one subspecies of Palearctic water frogs, genus Rana. Although C-banding patterns showed interspecific or intersubspecific variation, late replication banding patterns of all 13 chromosome pairs of these species were homologous. Minor differences of banding patterns were observed only in chromosomes 2, 7 and 13. Close comparison of the late replication banding patterns with those of three non-water frog species of Rana, and one each of Hyla and Bufo, provided important information on interspecific and intergeneric variability. In the Rana species, the banding patterns of all 13 pairs were homologous except for those some regions of 8 pairs. In one species each of Hyla and Bufo that was examined, the six large chromosome pairs (Nos. 1-6) showed banding homologies. Furthermore, among the Rana, Hyla and Bufo species the four large chromosome pairs (Nos. 1-3, 5 of Rana and Hyla, and Nos. 1, 3–5 of Bufo) shared banding homologies. These results show that the large chromosomes have been highly conserved in the evolutionary history of the three genera.  相似文献   

6.
M. Schmid  C. Steinlein 《Chromosoma》1991,101(2):123-132
High-resolution replication banding patterns were induced in prometaphase and prophase chromosomes of Xenopus laevis by treating kidney cell lines with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession. Up to 650 early and late replicating bands per haploid karyotype were demonstrated in the very long prophase chromosomes. This permits an exact identification of all chromosome pairs of X. laevis. Late replicating heterochromatin was located by analysing the time sequence of replication throughout the second half of S-phase. Neither heteromorphic sex chromosomes nor sex chromosome-specific replication bands were demonstrated in the heterogametic ZW females of X. laevis. A detailed examination of the BrdU/dT-labelled prometaphases and prophases revealed that the X. laevis chromosomes can be arranged in groups of four (quartets), most of which show conspicuous similarities in length, centromere position, and replication pattern. This is interpreted as further evidence for an ancient allotetraploid origin of X. laevis.by H.C. MacgregorThis paper is dedicated to Prof. Wolfgang Engel on the occasion of his 50th birthday  相似文献   

7.
Even if the common lizardLacerta vivipara and endemicLacerta andreanskyi from Moroccan Grand Atlas have the same mother species, the two species are definitely not closely related in present-day nature, whereL. vivipara stands at variance from all other lacertids in terms of cytogenetics. The use of replication banding, C-bands and R-bands has allowed for the identification of all chromosome pairs and two sex chromosomes inL. andreanskyi. Its karyotype is typical of Lacertidae. The W chromosome, characterized by late replication, is nevertheless of a type previously unknown in the family. The comparison of Z and W chromosomes by different methods of chromosome banding indicates little homology between them, if any. The replication study has shown that there is no dosage compensation for the Z chromosome in (homogametic) males. That genetic inactivation precedes chromosomal mutations in non-vivipara lacertid evolution of the odd sex chromosome is suggested.  相似文献   

8.
该文采用家蚕Bomoyx mori活体注射BrdU结合FPG(fluorochrome photolyusis Giem-sa)显带方法,以生殖腺为材料,成功显示出家蚕有丝分裂中期染色体复制带。由于处于S-期的细胞有早有晚,且同一细胞DNA各片段的复制亦有先后,因此BrdU掺入DNA合成的时间也有所不同,从而可产生出早、中、晚复制带型。BrdU掺入时间早,则会在家蚕部分染色体上出现大面积浅染带纹的早复制带。每一染色体皆有其独特的带纹特征,据此可初步将它与其它染色体相互区分;随着BrdU掺入时间的推后,染色体上会出现深浅交替、丰富的带纹,即中复制带型;至S-期DNA合成晚期掺入BrdU,最终染色体出现以深染带纹为主,浅染带纹仅出现于少数染色体的中部、近中部或端部的晚复制带。  相似文献   

9.
大熊猫与黑熊显带染色体的比较研究   总被引:3,自引:0,他引:3  
王亚军  陈红卫 《遗传学报》1999,26(4):309-314
以体外培养的大熊猫(Ailuropodamelanoleuca)与黑熊(Selenarctosthibetanus)外周血淋巴细胞为实验材料,应用BrdU复制带显示技术,研究了大熊猫和黑熊染色体晚复制带带型。通过对大熊猫与黑熊显带染色体带型的比较,发现黑熊部分具端着丝粒的染色体与大熊猫部分具中,亚中,或亚端着丝粒的染色体的整个短臂或整个长臂有明显的带型相似性,在黑熊具中,亚中着丝粒染色体中,仅33  相似文献   

10.
A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species.  相似文献   

11.
The addition of thymidine (TdR) to cells growing in a medium containing 5-bromodeoxyuridine (BUdR) at the end of the first replication cycle results in the incorporation of TdR into the late replicating DNA regions. These sites can be visualized by staining the metaphase chromosomes with the fluorescent dye "33258 Hoechst" or a "33258 Hoechst" Giemsa procedure. A sequence of late replication patterns has been established in metaphase chromosomes of cultured human peripheral lymphocytes. The patterns are in agreement with those obtained by the standard autoradiographic procedures, but are more accurate. As is known from autoradiography, late replicating bands are in the position of G or Q bands. The "33258 Hoechst" Giemsa staining procedure of chromosomes which have replicated in the presence of BUdR first and in TdR for the last 2 hrs of the S phase is preferable to the currently used Giemsa banding techniques: the method yields very well banded metaphases in all preparations examined, as the chromosome structure is not disrupted by the pretreatment. The bands are very distinct, even in the "difficult" chromosomes (e.g. No. 4, 5, 8 and X). In female cells the late replicating X chromosome can be identified by its size and staining pattern. In addition to the replication asynchrony, the sequence of replication within both X chromosomes in female cells is not absolutely identical. The phenomenon of a phase difference in replication between the homologues is not a peculiarity of the X chromosome, but can be found in all autosomes as well as in homologous positions on the chromatids of individual chromosomes.  相似文献   

12.
Differential replication of male and female X-chromosomes in Drosophila   总被引:1,自引:1,他引:0  
The replication patterns of larval salivary gland chromosomes of D. hydei and D. melanogaster were studied by autoradiography with tritiated thymidine injected in mid third instar larvae. The male X chromosome showed a different replication behavior in comparison to that of the female X chromosome and autosomes. It is concluded that the male X chromosome finishes its replication earlier than the female X chromosome. Moreover, the time needed for a complete replication cycle of individual identical replication units was found to be shorter in the male than in the female X chromosome. Although the whole X chromosomes behave different there were no differences observed in the sequence of the discontinuous labeling patterns of the two types of X chromosome. One autosomal replication unit was observed which showed a different replication behavior in males and females. The possible origin of the differential behavior of the two X chromosomes is discussed in terms of their difference in degree of polyteny.  相似文献   

13.
In order to study the divergence of teleost sex chromosomes, subtractive cloning was carried out between genomic DNA of males and females of the rainbow trout (XX/XY) and of Leporinus elongatus (ZW/ZZ). Inserts cloned in a plasmid vector were individually tested on Southern blots of DNA of males and females for sex specificity. No sex-specific insert was obtained from trout, but two out of ten inserts cloned from L. elongatus showed sex-specific patterns in this species: one corresponds to a sequence present on both Z and W chromosomes, while the other is W specific. Sequences of these two inserts show neither clear homology with other known sequences, nor an open reading frame. They cross-hybridize with the genomic DNA of Leporinus friderici, but without sex-specific patterns. Twenty-four L. elongatus adults were sexed by gonadal observation, chromosomed examination and Southern hybridization with one or the other insert. Ten males and 11 females had chromosomes and hybridization patterns typical of their sex. One ZW female was recognized as a male with the W-specific probe. This was also the case for two unusual ZW males, one having a male hybridization pattern with the other probe. These three atypical individuals may result from single genetic exchanges between four regions of the Z and the W, giving rise to three atypical W chromosomes. Finding males with such atypical heterochromosomes in a female heterogametic species may indicate that a gradual transition occurs between the heterogametic systems.  相似文献   

14.
Extensive cytogenetic analyses on a population of the leptodactylid frog Eleutherodactylus riveroi in northern Venezuela revealed the existence of multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. The XAA(Y) karyotype originated by a centric (Robertsonian) fusion between the original, free Y chromosome and an autosome. 46.2% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population 53.8% of the male animals still possess the original, free XY sex chromosomes. E. riveroi is only the second vertebrate species discovered in which a derived Y-autosome fusion coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. Various banding techniques and in situ hybridizations have been carried out to characterize the karyotypes. DNA flow cytometric measurements show that the genome size of E. riveroi resembles that of other Eleutherodactylus species. The cytogenetic data obtained in E. riveroi are compared with those of the sole other vertebrate known to possess the extremely rare, multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. Surprisingly enough, this vertebrate again is a frog belonging to the genus Eleutherodactylus [E. ((maussi) biporcatus] which lives exactly in the same habitat in northern Venezuela as does E. riveroi.  相似文献   

15.
Different diploid chromosome numbers have been reported for the tufted deer Elaphodus cephalophus (female, 2n = 46/47; male, 2n = 47/48) in earlier reports. In the present study, chromosomal analysis of seven tufted deer (5 male symbol, 2 female symbol) revealed that the karyotype of these animals contains 48 chromosomes, including a pair of large heteromorphic chromosomes in the male. C-banding revealed these chromosomes to be very rich in constitutive heterochromatin. Chromosome banding and PCR of sex chromosome-linked genes (SRY, ZFX, ZFY) performed on DOP-PCR products of single microdissected X and Y chromosomes confirmed that the large telocentric chromosome without secondary constriction is the X chromosome whereas the subtelocentric chromosome is the Y. The increased size of both, the X and Y chromosome, appears to be at least partially attributable to the presence of substantial amounts of heterochromatin.  相似文献   

16.
We present here the first detailed replication banding study of a marsupial species using the BrdU-replication technique. A comparison of the structural and replication bands of the chromosomes of Sminthopsis crassicaudata clearly demonstrates that the replication behavior is the same as the described for the chromosomes of eutherians. The early replicating segments correspond to R-bands, whereas the late-replicating regions tend to be situated within Q- and C-bands. Use of this technique clearly reveals an early and late replicating X chromosome. The very small Y chromosome can be subdivided into two replication segments, but no replication homologies can be demonstrated between the X and Y chromosomes of S. crassicaudata.  相似文献   

17.
The characteristic patterns of dynamic banding (replication banding) were analysed. Extremely high resolution (850 to 1,250 bands per genome) G- and R-band patterns were obtained after 5-bromo-2-deoxyuridine (BrdUrd) incorporation either during the early or the late S-phase. We synchronized human lymphocytes with high concentrations of thymidine or BrdUrd as blocking agents, followed by low concentrations of BrdUrd or thymidine respectively as releasing agents, and obtained R- or G-band patterns respectively. The dynamic R-and G-band patterns were complementary for all chromosomes, even for the late-replicating X chromosome. There was no overlapping and every part of each chromosome was positively stained by one of the two banding procedures. The complementarity of the two patterns shows that both high thymidine and high BrdUrd concentrations blocked S-phase progression near the R-band to G-band replication transition in the middle of S-phase. Some bands of the inactive X chromosome replicate before this transition concurrently with R-band replication. The 48 different telomeric regions could be classified into 5 distinct morphotypes based upon the distribution of early and late-replicating DNA in each telomeric region. The dynamic band patterns are particularly useful for the study of the structural and physiological organization of chromosomes at high resolution and should prove invaluable for assessing the replication behavior of rearranged chromosomes.  相似文献   

18.
Replication patterns of the X chromosomes and autosomes in D. melanogaster male and female larvae during the discontinuously labeled initial and end phases of DNA synthesis were compared. In female larvae X and autosomes behaved correspondingly during all the replication stages. In males, however, the X chromosome shows a differential replication behavior from that of the autosomes already during the discontinuously labeled initial stage.—In those nuclei of both sexes, in which the autosomes correspond in their initial replication patterns, significantly more labeled regions are to be found over the male X than over the female X. The complementary behavior during the end phases (Berendes, 1966), i.e. the reverse of that above, leads to an earlier completion of the replication cycle in most of the labeled regions of the male X chromosome. The differential replication revealed in the autoradiograms is interpreted as a consequence of the polytene structure in giant chromosomes.  相似文献   

19.
The mitotic chromosomes of three anuran species, Scaphiopus holbrooki, Litoria infrafrenata and Odontophrynus americanus, were analyzed by means of the 5-bromodeoxyuridine/deoxythymidine (BrdU/dT) replication banding technique. These species exhibit large differences in their genome sizes: S. holbrooki possesses one of the smallest genomes among vertebrates, L. infrafrenata has a genome size near the modal DNA value of most Amphibia, whereas O. americanus is a tetraploid species. BrdU/dT labeling induces reproducible and reliable R- and G-replication bands along the metaphase chromosomes of all three species. Irrespective of the genome size of the species considered, the number of early (R-) and late (G-) replicating bands per haploid karyotype is nearly the same. The chromosomes of the autotetraploid O. americanus can be arranged into sets of four homologous chromosomes (quartets). C-bands and BrdU/dT replication bands reveal heterogeneity within the quartets 1, 3 and 4 that are interpreted as the initiation of a diploidization process.  相似文献   

20.
DNA replication patterns were determined in the autosomes and sex chromosomes of phytohemagglutinin-stimulated lymphocytes from the opossum (Didelphis virginiana) by employing thymidine-3H labeling and high-resolution radioautography. Opossum chromosomes are desirable experimental material due to their large size, low number (2n = 22), and morphologically distinct sex chromosomes. The autosomes in both sexes began DNA synthesis synchronously and terminated replication asynchronously. One female X chromosome synthesized DNA throughout most of the S phase. Its homologue, however, began replication approximately 3.5 hr later. The two X's terminated DNA synthesis synchronously, slightly later than the autosomes. This form of late replication, in which one X chromosome begins DNA synthesis later than its homologue but completes replication at the same time as its homologue, is apparently unique in the opossum. The male X synthesized DNA throughout S while the Y chromosome exhibited late-replicating characteristics. The two sex chromosomes completed synthesis synchronously, slightly later than the autosomes. Grain counts were performed on all chromosomes to analyze trends in labeling intensity at hourly intervals of S. By analyzing the percent of labeled mitotic figures on radioautographs at various intervals after introduction of arginine-3H, chromosomal protein synthesis was found not to be restricted to any portion of interphase but to increase throughout S and into G2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号