首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

2.
Phage H22 was isolated from sewage using Pseudomonas aeruginosa NCTC 8505 (serotype 0:3) as the host. Although not O-specific, this phage was found to have lipopolysaccharide (LPS) as a receptor. The broad host-range and lack of O-specificity of the phage suggested that its receptor site was in the core region of the LPS. Phage H22 had a Bradley type A structure. It was unaffected by chloroform and diethyl ether, and was stable between pH 5 and 8 and in the temperature range 0 to 60 degrees C. The adsorption rate constant was 14.6 X 10(-9) ml min-1. The phage had a latent period of 43 min, with a rise time of 18 min and a burst size of 6. The adsorption of phage to whole cells and LPS occurred over a broad pH range. Maximum adsorption occurred at 50 degrees C and pH 7.5 in the presence of 0.001 M Ca2+.  相似文献   

3.
Mild acid hydrolysis with 1% acetic acid (100 degrees C, 15-60 min) of lipopolysaccharide (LPS) isolated from Coxiella burnetii phase I cells leads to a drastic decrease in its serological reactivity as shown by the passive hemolysis test. This decrease in reactivity occurs parallel or even prior to the cleavage of LPS into free lipid A and the polysaccharide moiety. During this mild hydrolysis two unusual sugars (X and Y) are released from the LPS, which were obtained in pure state by thin-layer chromatography. Analysis of their alditol acetate derivatives by gas chromatography/mass spectrometry revealed that sugar X is a 6-deoxy-3-C-methyl-hexose and sugar Y a 3-C-(hydroxymethyl)-pentose. Using a range of authentic standards and different thin-layer and gas chromatographic conditions, X could be recognized as 6-deoxy-3-C-methyl-gulose (virenose), very probably as the L form of this sugar (L-virenose). Y has been identified as 3-C-(hydroxymethyl)-lyxose (dihydrohydroxystreptose) by comparing it with newly synthesized 3-C-(hydroxymethyl)-pentoses (Dahlman, O., Garegg, P. J., Mayer, H., Schramek, S., unpublished results). Both branched sugars are (at least partially) in terminal positions since methylation analysis of LPS afforded (mainly) their permethylated derivatives. This analysis further showed virenose to be linked in C. burnetii phase I LPS as pyranose and dihydro-hydroxystreptose as furanose. The terminal linkage and the chemical nature of X and Y are in accordance with the observed acid-lability of the serological determinants.  相似文献   

4.
1. The composition of the lipopolysaccharides and the corresponding lipid-free polysaccharides from four R-mutants of Salmonella has been studied. All the lipopolysaccharides, from RI and RII serotypes contained d-glucose, d-galactose, heptose, N-acetylglucosamine and 3-deoxy-2-oxo-octonate. The polysaccharide obtained from the RII lipopolysaccharides also contained all these sugars. The polysaccharides from RI lipopolysaccharides lacked N-acetylglucosamine. 2. From partial hydrolysates of the lipopolysaccharides, a number of oligosaccharides have been isolated and partially characterized. Oligosaccharides containing N-acetylglucosamine or glucosamine were obtained only from RII lipopolysaccharides. Several oligosaccharides composed of glucose and galactose were common to RI and RII preparations. 3. A structural unit, based on the oligosaccharides found, is proposed for the RII lipopolysaccharide. It contains the sequence: alpha-N-acetylglucosaminyl- alpha-glucosyl-alpha-galactosyl-glucosyl.... A second alpha-galactosyl residue is bound to position 6 of the last glucosyl group. The complete unit is believed to to be attached to a polyheptose phosphate backbone in the RII antigen. 4. The RI lipopolysaccharide of Salmonella minnesota contains an analogous structure lacking the terminal N-acetylglucosamine residue. 5. A basal structure common to the lipopolysaccharides of several Salmonella species is proposed.  相似文献   

5.
A strain of Arthrobacter aurescens which secretes a large amount of chondroitinase into a culture broth, was isolated from soil. The chondroitinase was purified 380-fold over culture broth in 24% yield and crystallized. Some properties of the purified enzyme were studied and described: thermal stability (below 45 degrees), pH stability (pH 4.9 to 7.4), optimum temperature (50 degrees), and optimum pH (pH 6.0). Chrondroitin sulfate A and C, chondroitin, and hyaluronic acid were split by the enzyme but dermatan sulfate could not be. The initial rates of enzymic degradation of chondroitin sulfate C, chondroitin, and hyaluronic acid were 1.1, 1.95, and 3.2, respectively, compared to that of chondroitin sulfate A. When the enzyme was allowed to act on chondroitin sulfate A and C, the reducing power and the ultraviolet absorption at 232 nm increased proportionally to the decrease in viscosity of the substrate solution. Finally these substrates were degraded to the extent of 100% to disaccharides. By the enzyme action the main products from chondroitin sulfate A and C were deta 4,5-unsaturated disaccharides, which were identified as 2-acetamido-2-deoxy-3-O-(Beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose and 2-acet-amido-2-deoxy-3-O-(Beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose by paper chromatography, ultraviolet absorption spectroscophy, and infrared spectroscopy. Thus it is suggested that the chondroitinase is a chondroitin sulfate A and C lyase, one of the hyaluronate lyases (EC 4.2.99.1).  相似文献   

6.
A highly thermostable alkaline amylase producing Bacillus sp. PN5 was isolated from soil, which yielded 65.23 U mL(-1) of amylase in medium containing (%) 0.6 starch, 0.5 peptone and 0.3 yeast extract at 60 degrees C, pH 7.0 after 60 h of incubation. Maximum amylase activity was at pH 10.0 and 90 degrees C. The enzyme retained 80% activity after 1 h at pH 10.0. It exhibited 65% activity at 105 degrees C and had 100% stability in the temperature range between 80 and 100 degrees C for 1 h. In addition, there was 86.36% stability after 1-h incubation with sodium dodecylsulphate. These properties indicated possible use of this amylase in starch saccharification and detergent formulation.  相似文献   

7.
Due to the formation of micelles, severance of the hydrophilic (poly- or oligosaccharide) and hydrophobic ("Lipid A") domains of bacterial lipopolysaccharides at pH 3.4 or 4.5 and 100 degrees is slow and sometimes does not proceed at all; partially degraded fragments are usually formed. At pH 3.4 (100 degrees) in aqueous 1% sodium dodecylsulphate (SDS), both lipopolysaccharides of the Bordetella pertussis endotoxin are cleaved within 20-30 min, but 80% of the glycosidically bound phosphate present in the hydrophobic domain is lost. Other endotoxins behave similarly. At pH 4.5 (100 degrees) and in the absence of detergent, hydrolysis of the glycosidic bonds of 3-deoxy-D-manno-2-octulosonic acid residues of the B. pertussis endotoxin is negligible but, in aqueous 1% SDS, severance of the two regions of LPS 1 is complete within 1 h (that of LPS-2 requires 3-4 h), and the glycosidically bound phosphate of the isolated hydrophobic region is preserved. Comparison of the rate of acid-catalysed hydrolysis of the glycosidically bound phosphate present in this "isolated Lipid A" preparation with that of 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-alpha- and -beta-D-glucopyranose 1-phosphates established that the former 1-phosphate was the alpha anomer.  相似文献   

8.
This is the first report of the isolation and characterization of a fish virus from the Philippines. The virus was isolated using snakehead spleen cells (SHS) from severely lesioned epizootic ulcerative syndrome (EUS)-affected snakehead Ophicephalus striatus from Laguna de Bay, in January 1991. The virus induced cytopathic effects (CPE) in SHS cells yielding a titer of 3.02 x 10(6) TCID50 ml(-1) at 25 degrees C within 2 to 3 d. Other susceptible cell lines included bluegill fry (BF-2), catfish spleen (CFS) and channel catfish ovary (CCO) cells. Replication in chinook salmon embryo cells (CHSE-214) was minimal while Epithelioma papulosum cyprini cells (EPC) and rainbow trout gonad cells (RTG-2) were refractory. Temperatures of 15 to 25 degrees C were optimum for virus replication but the virus did not replicate at 37 degrees C. The virus can be stored at -10 and 8 degrees C for 30 and 10 d, respectively, without significant loss of infectivity. Viral replication was logarithmic with a 2 h lag phase; viral assembly in the host cells occurred in 4 h and release of virus occurred 8 h after viral infection. A 1-log difference in TCID50 titer between the cell-free virus and the total virus was noted. Freezing and thawing the virus caused a half-log drop in titer. Viral exposure to chloroform or heating to 56 degrees C for 30 min inactivated the virus. Exposure to pH 3 medium for 30 min resulted in a more than 100-fold loss of viral infectivity. The 5-iododeoxyuridine (IUdR) did not affect virus replication, indicating a RNA genome. Neutralization tests using the Philippine virus, the ulcerative disease rhabdovirus (UDRV) and the infectious hematopoietic necrosis virus (IHNV) polyvalent antisera showed slight cross-reaction between the Philippine virus antiserum and UDRV but established no serological relationship with SHRV and IHN virus. Transmission electron microscopy (TEM) of SHS cells infected with the virus showed virus particles with typical bullet morphology and an estimated size of 65 x 175 nm. The Philippine virus was therefore a rhabdovirus, but the present study did not establish its role in the epizootiology of EUS.  相似文献   

9.
The chemoenzymatic route to 2-deoxy-2-propionamido-D-mannose (1b), 2-butyramido-2-deoxy-D-mannose (2b) and 2-deoxy-2-phenylacetamido-D-mannose (3b) involved N-acylation of 2-amino-2-deoxy-D-glucose followed by alkaline C-2 epimerization and selective microbial removal of the epimers with gluco-configuration. The latter step employed whole cells of Rhodococcus equi A4 able to degrade 2-deoxy-2-propionamido-D-glucose (1a), 2-butyramido-2-deoxy-D-glucose (2a) and 2-deoxy-2-phenylacetamido-D-glucose (3a) but inactive towards the corresponding manno-isomers. The metabolism of the gluco-isomers probably involved phosphorylation and subsequent deacylation. 2-Acetamido-2-deoxy-6-O-phospho-D-glucose amidohydrolase [EC 3.5.1.25] but not 2-acetamido-2-deoxy-D-glucose amidohydrolase was detected in the cell extract, the former enzyme being partially purified (15.8-fold with an overall yield of 18.1% and a specific activity of 0.95 units mg-1 protein). According to SDS-PAGE electrophoresis, gel filtration and mass spectrometry, the enzyme was a monomer with an apparent molecular mass of approximately 42 kDa. The optimum temperature and pH of the enzyme were 60 degrees C and 8.0-9.0, respectively. 2-Acetamido-2-deoxy-6-O-phospho-D-glucose and 2-acetamido-2-deoxy-6-O-sulfo-D-glucose but not 2-acetamido-2-deoxy-1-O-phospho-D-glucose or 2-acetamido-2-deoxy-D-glucose were substrates of the enzyme. Its activity was slightly inhibited by the addition of 1 mM Al3+, Ca2+, Co2+, Cu2+, Mn2+ or Zn2+ and activated by 1 mM Mg2+. The concentrated enzyme is highly stable at 4 degrees C in the presence of 0.1 M ammonium sulfate.  相似文献   

10.
A highly active inorganic pyrophosphatase was purified to electrophoretical homogeneity from the cytosol of Sulfolobus acidocaldarius strain 7, an extremely thermoacidophilic archaebacterium. The enzyme has an apparent molecular mass of 80 kDa as estimated by gel permeation chromatography, and showed a 21-kDa polypeptide on SDS-PAGE, suggesting that the archaebacterial enzyme is similar to most of the eubacterial pyrophosphatases rather than eukaryotic ones. The pI = 5.1. The enzyme showed relatively high content of Pro and low content of Ser plus Thr. The optimal pH was 6.5 (at 56 degrees C). From the Arrhenius plot an activation energy of 11.2 kcal/mol was obtained between 37-95 degrees C. The specific activity was 617 mumol Pi release min-1 mg-1 at 56 degrees C. The S. acidocaldarius pyrophosphatase was extremely stable. Complete activity remained after incubation at 100 degrees C for 10 min. No dissociation into subunit or unfolding of polypeptide chain occurred in the presence of 8 M urea. Experiments using guanidine-HCl suggested that the transition between a native tetrameric state and an unfolded state is completely reversible, and essentially independent of any additional factors such as divalent metal cation or dithiothreitol.  相似文献   

11.
A Bacillus licheniformis strain, 189, isolated from a hot spring environment in the Azores, Portugal, strongly inhibited growth of Gram-positive bacteria. It produced a peptide antibiotic at 50 degrees C. The antibiotic was purified and biochemically characterized. It was highly resistant to several proteolytic enzymes. Additionally, it retained its antimicrobial activity after incubation at pH values between 3.5 and 8; it was thermostable, retaining about 85% and 20% of its activity after 6 h at 50 degrees C and 100 degrees C, respectively. Its molecular mass determined by mass spectrometry was 3249.7 Da.  相似文献   

12.
13.
A hyperthermophilic archaeon strain, KOD1, was isolated from a solfatara at a wharf on Kodakara Island, Kagoshima, Japan. The growth temperature of the strain ranged from 65 to 100 degrees C, and the optimal temperature was 95 degrees C. The anaerobic strain was an S0-dependent heterotroph. Cells were irregular cocci and were highly motile with several polar flagella. The membrane lipid was of the ether type, and the GC content of the DNA was estimated to be 38 mol%. The 16S rRNA sequence was 95% homologous to that of Pyrococcus abyssi. The optimum growth pH and NaCl concentration of the strain KOD1 were 7.0 and 3%, respectively. Therefore, strain KOD1 was identified as a Pyrococcus sp. Strain KOD1 produced at least three extracellular proteases. One of the most thermostable proteases was purified 21-fold, and the molecular size was determined to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45 kDa by gel filtration chromatography. The specific activity of the purified protease was 2,160 U/mg of protein. The enzyme exhibited its maximum activity at approximately pH 7.0 and at a temperature of 110 degrees with azocasein as a substrate. The enzyme activity was completely retained after heat treatment at 90 degrees C for 2 h, and the half-life of enzymatic activity at 100 degrees C was 60 min. The proteolytic activity was significantly inhibited by p-chloromercuribenzoic acid or E-64 but not by EDTA or phenylmethylsulfonyl fluoride. Proteolytic activity was enhanced threefold in the presence of 8 mM cysteine. These experimental results indicated that the enzyme was a thermostable thiol protease.  相似文献   

14.
An alkalophilic, environmental micro-organism, Bacillus sp. BG-11, has been isolated and characterized. It produced 76 U ml-1 of chitinase in liquid batch fermentation after 72 h of incubation at 50 degrees C using chitin-enriched medium. The molecular weight of purified chitinase was estimated to be 41 kDa by SDS-PAGE. The pH and temperature optima of chitinase immobilized on chitosan and calcium alginate were 8.5 and 50 degrees C, respectively, which were same as that of free enzyme. The pH and thermostability of immobilized chitinase were enhanced significantly. The chitinase immobilized on chitosan was stable between pH 5.0 and 10.0, and the half-life of chitosan-immobilized enzyme at 70, 80 and 90 degrees C was 90, 70 and 60 min, respectively. The end-products formed during the enzyme-substrate reaction were identified by 13C-NMR, and N-acetyl-D-glucosamine was found to be the major end-product. GlcNAc (GlcNAc)2 and (GlcNAc)3 inhibited the chitinase activity by 32, 25 and 18%, respectively, at a concentration of 10 mmol l-1. The shelf-life of chitinase (retained 100% activity) at 4 degrees C was 8 weeks in the presence of either sodium azide (100 microgram ml-1), sodium metabisulphite (0.1% w/v) or KCl (15% w/v). The enzyme was resistant to the action of proteases and allosamidin.  相似文献   

15.
When cultured in feather-containing broth with a growth optimum of pH 7.0 and 47 degrees C, a Bacillus licheniformis strain exhibited a high chicken feather-degrading activity. A trypsin-like protease was isolated from its ferment broth and was partially characterized. The enzyme was constitutively secreted and was highly active towards N-benzoyl-Phe-Val-Arg-p-nitroanilide as chromogenic substrate. Its pH optimum was 8.5 and it exhibited the highest activity at 52 degrees C. Fractionation on Sephadex G-100 column revealed that its molecular mass was about 42 kDa. The enzyme, which is new for the genus Bacillus, is a thiol protease, as tosyl-L-phenylalanine chloromethyl ketone, tosyl-L-lysine chloromethyl ketone, phenylmethylsulfonyl fluoride and ethylenediamine tetraacetate did not inhibit it, while HgCl2 and para-chloromercuribenzoate lowered its activity.  相似文献   

16.
Proteolytic enzymes of Saccharomyces carlsbergensis   总被引:9,自引:1,他引:8       下载免费PDF全文
1. Of four proteolytic enzymes isolated from autolysing Saccharomyces carlsbergensis, one is inactivated at about 45 degrees C, whereas the others are stable at 50 degrees C. pH optima for activity are from 3.0 to 8.0 but maximum stability is between pH6.0 and 6.5. All appear to be glycoproteins, the carbohydrate moiety containing glucose and mannose residues. 2. Lysed protoplasts of the same yeast release four proteolytic enzymes each of which have two pH optima at pH3.0 and 7.0 approximately. Compared with the enzymes from autolysed yeast, resistance to high temperature is much less, and they are not glycoprotein in nature. 3. The same yeast grown with N-acetyltyrosine ethyl ester as nitrogen source secretes into the medium four proteases believed to be glycoprotein in nature. Generally they resemble the enzymes from lysed protoplasts more than those from autolysing yeast.  相似文献   

17.
A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at 30 degrees C, and was unstable at temperatures higher than 30 degrees C, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24 h incubation at 4 degrees C. The addition of Ca2+ and Mg2+ enhanced the enzyme activity of LipA1, whereas the Cd2, Zn2+, Co2+, Fe3+, Hg2+, Fe2+, Rb2+, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate (C14 acyl groups).  相似文献   

18.
Production and characterization of tannase from Bacillus cereus KBR9   总被引:1,自引:0,他引:1  
A tannase-producing soil bacteria has been isolated and identified as Bacillus cereus. It can degrade tannic acid and produce maximum tannase (0.22 U/ml) at stationary phases of growth (24 h). Maximum growth and enzyme production occurred with initial medium pH of 4.5-5.0. Partial purified tannase showed optimum activity at pH 4.5 and 40 degrees C. It remains stable up to 30 degrees C and pH 4.5 to 5.0. The enzyme is salt tolerant, stable up to 2 m of NaCl and retains 82% original activity in 3 m.  相似文献   

19.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 micrometers in diameter. The new isolate grew at temperatures between 60 and 95 degrees C (optimum, 85 degrees C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120 degrees C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100 degrees C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110 degrees C. The enzyme formed mainly alpha-cyclodextrin with small amounts of beta- and gamma-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

20.
An extracellular alkaline serine proteinase from Thermus strain ToK3 was isolated and purified to homogeneity by (NH4)2SO4 precipitation followed by ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex, affinity chromatography on N alpha-benzyloxycarbonyl-D-phenylalanyl-triethylenetetraminyl-Sepha rose 4B and gel-filtration chromatography on Sephadex G-75. The purified enzyme had a pI of 8.9 and an Mr determined by gel-permeation chromatography of 25,000. The specific activity was about 37,700 proteolytic units/mg with casein as substrate, and the pH optimum was 9.5. Proteolytic activity was inhibited by low concentrations of di-isopropyl phosphorofluoridate and phenylmethanesulphonyl fluoride, but was unaffected by EDTA, EGTA, o-phenanthroline, N-ethyl-5-phenylisoxazolium-3'-sulphonate, N alpha-p-tosyl-L-phenylalanylchloromethane, N alpha-p-tosyl-L-lysylchloromethane, trypsin inhibitors and pepstatin A. The enzyme contained approx. 10% carbohydrate and four disulphide bonds. No Ca2+, Zn2+ or free thiol groups were detected. It hydrolysed several native and dye-linked proteins and synthetic chromogenic peptides and esters. The enzyme was very thermostable (half-life values were 840 min at 80 degrees C, 45 min at 90 degrees C and 5 min at 100 degrees C). The enzyme was unstable at low ionic strength: after 60 min at 75 degrees C in 0.1 M-Tris/acetate buffer, pH 8, only 20% activity remained, compared with no loss in 0.1 M-Tris/acetate buffer, pH 8, containing 0.4 M-NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号