首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most positive redox potential ever recorded for a flavin adenine dinucleotide (FAD) containing protein has been measured for an electron-transfer flavoprotein (ETF) synthesized by Methylophilus methylotrophus. This potential value, 0.196 V versus the standard hydrogen electrode (vs SHE), was measured at pH 7.0 for the one-electron reduction of fully oxidized ETF (ETFox) to the red anionic semiquinone form of ETF (ETF.-). Quantitative formation of ETF.- was observed. The first successful reduction of ETF from M. methylotrophus to its two-electron fully reduced form was also achieved. Although addition of the second electron to ETF.- was extremely slow, the potential value measured for this reduction was -0.197 V vs SHE, suggesting a kinetic rather than thermodynamic barrier to two-electron reduction. These data are believed to be consistent with the postulated catalytic function of ETF to accept one electron from the iron-sulfur cluster of trimethylamine dehydrogenase (TMADH). The second electron reduction appears to have no catalytic function. The very positive potential measured for this ETF and the wide separation of potentials for the two electron reduction steps show that this ETF is a unique and interesting flavoprotein. In addition, this work highlights that while ETFs exhibit similar structural and spectral properties, they display wide variations in redox properties.  相似文献   

2.
The midpoint reduction potentials of the FAD cofactor in wild-type Methylophilus methylotrophus (sp. W3A1) electron-transferring flavoprotein (ETF) and the alphaR237A mutant were determined by anaerobic redox titration. The FAD reduction potential of the oxidized-semiquinone couple in wild-type ETF (E'(1)) is +153 +/- 2 mV, indicating exceptional stabilization of the flavin anionic semiquinone species. Conversion to the dihydroquinone is incomplete (E'(2) < -250 mV), because of the presence of both kinetic and thermodynamic blocks on full reduction of the FAD. A structural model of ETF (Chohan, K. K., Scrutton, N. S., and Sutcliffe, M. J. (1998) Protein Pept. Lett. 5, 231-236) suggests that the guanidinium group of Arg-237, which is located over the si face of the flavin isoalloxazine ring, plays a key role in the exceptional stabilization of the anionic semiquinone in wild-type ETF. The major effect of exchanging alphaArg-237 for Ala in M. methylotrophus ETF is to engineer a remarkable approximately 200-mV destabilization of the flavin anionic semiquinone (E'(2) = -31 +/- 2 mV, and E'(1) = -43 +/- 2 mV). In addition, reduction to the FAD dihydroquinone in alphaR237A ETF is relatively facile, indicating that the kinetic block seen in wild-type ETF is substantially removed in the alphaR237A ETF. Thus, kinetic (as well as thermodynamic) considerations are important in populating the redox forms of the protein-bound flavin. Additionally, we show that electron transfer from trimethylamine dehydrogenase to alphaR237A ETF is severely compromised, because of impaired assembly of the electron transfer complex.  相似文献   

3.
NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Since the distribution of electrons is governed solely by the redox potentials of the cofactors, there are nine different ways the electrons can be distributed and hence nine possible unique forms of the protein. More than one species of reductase will exist at a given level of oxidation except when the protein is either totally reduced or oxidized. In an attempt to unambiguously characterize the redox properties of the physiologically relevant FMNH(2) form of the reductase, the T491V mutant of NADPH-cytochrome P450 reductase has been reconstituted with 5'-deazaFAD which binds to the FAD-binding site of the reductase with a K(d) of 94 nM. The 5'-deazaFAD cofactor does not undergo oxidation or reduction under our experimental conditions. The molar ratio of FMN to 5'-deazaFAD in the reconstituted reductase was 1.1. Residual FAD accounted for less than 5% of the total flavins. Addition of 2 electron equivalents to the 5'-deazaFAD T491V reductase from dithionite generated a stoichiometric amount of the FMN hydroquinone form of the protein. The 5'-deazaFAD moiety remained oxidized under these conditions due to its low redox potential (-650 mV). The 2-electron-reduced 5'-deazaFAD reductase was capable of transferring only a single electron from its FMN domain to its redox partners, ferric cytochrome c and cytochrome b(5). Reduction of the cytochromes and oxidation of the reductase occurred simultaneously. The FMNH(2) in the 5'-deazaFAD reductase autoxidizes with a first-order rate constant of 0.007 s(-)(1). Availability of a stable NADPH-cytochrome P450 reductase capable of donating only a single electron to its redox partners provides a unique tool for investigating the electron-transfer properties of an intact reductase molecule.  相似文献   

4.
The oxidation-reduction potential values for the two electron transfers to glucose oxidase were obtained at pH 5.3, where the neutral radical is the stable form, and at pH 9.3, where the anion radical is the stable form. The midpoint potentials at 25 degrees were: pH 5.3 EFl1ox + e- H+ equilibrium EFlH. Em1 = -0.063 +/- 0.011 V EFlH. + e- + H+ equilibrium EFlredH2 Em2 = -0.065 +/- 0.007 V pH 9.3 EFlox + e- EFi- Em1 = -0.200 +/- 0.010 V EFi- + e- + H+ equilibrium EFlredH- Em2 = -0.240 +/- 0.005 V All potentials were measured versus the standard hydrogen electrode (SHE). The potentials indicated that glucose oxidase radicals are stabilized by kinetic factors and not by thermodynamic energy barriers. The pK for the glucose oxidase radical was 7.28 from dead time stopped flow measurements and the extinction coefficient of the neutral semiquinone was 4140 M-1 cm-1 at 570 nm. Both radical forms reacted with oxygen in a second order fashion. The rate at 25 degrees for the neutral semiquinone was 1.4 X 10(4) M-1 s-1; that for the anion radical was 3.5 X 10(4) M-1 s-1. The rate of oxidation of the neutral radical changed by a factor of 9 for a temperature difference of 22 degrees. For the anion radical, the oxidation rate changed by a factor of 6 for a 22 degrees change in temperature. We studied the oxygen reactivity of the 2-electron reduced form of the enzyme over a wide wavelength range and failed to detect either oxygenated flavin derivatives or semiquinoid forms as intermediates. The rate of reoxidation of fully reduced glucose oxidase at pH 9.3 was dependent on ionic strength.  相似文献   

5.
4-Hydroxybenzoyl-CoA reductase (4-HBCR) is a key enzyme in the anaerobic metabolism of phenolic compounds. It catalyzes the reductive removal of the hydroxyl group from the aromatic ring yielding benzoyl-CoA and water. The subunit architecture, amino acid sequence, and the cofactor/metal content indicate that it belongs to the xanthine oxidase (XO) family of molybdenum cofactor-containing enzymes. 4-HBCR is an unusual XO family member as it catalyzes the irreversible reduction of a CoA-thioester substrate. A radical mechanism has been proposed for the enzymatic removal of phenolic hydroxyl groups. In this work we studied the spectroscopic and electrochemical properties of 4-HBCR by EPR and M?ssbauer spectroscopy and identified the pterin cofactor as molybdopterin mononucleotide. In addition to two different [2Fe-2S] clusters, one FAD and one molybdenum species per monomer, we also identified a [4Fe-4S] cluster/monomer, which is unique among members of the XO family. The reduced [4Fe-4S] cluster interacted magnetically with the Mo(V) species, suggesting that the centers are in close proximity, (<15 A apart). Additionally, reduction of the [4Fe-4S] cluster resulted in a loss of the EPR signals of the [2Fe-2S] clusters probably because of magnetic interactions between the Fe-S clusters as evidenced in power saturation studies. The Mo(V) EPR signals of 4-HBCR were typical for XO family members. Under steady-state conditions of substrate reduction, in the presence of excess dithionite, the [4Fe-4S] clusters were in the fully oxidized state while the [2Fe-2S] clusters remained reduced. The redox potentials of the redox cofactors were determined to be: [2Fe-2S](+1/+2) I, -205 mV; [2Fe-2S] (+1/+2) II, -255 mV; FAD/FADH( small middle dot)/FADH, -250 mV/-470 mV; [4Fe-4S](+1/+2), -465 mV and Mo(VI)/(V)/(VI), -380 mV/-500 mV. A catalytic cycle is proposed that takes into account the common properties of molybdenum cofactor enzymes and the special one-electron chemistry of dehydroxylation of phenolic compounds.  相似文献   

6.
7.
Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), but its function is not fully understood. Specifically, it is unclear whether BH4 participates directly in electron transfer. We investigated the redox properties of BH4 and several other pteridines with cyclic voltammetry and Osteryoung square wave voltammetry. BH4 was oxidized at a potential of +0.27 V vs normal hydrogen electrode (NHE); the corresponding reductive signal after the reversal of the scan direction was very small. Instead, reduction occurred at a potential of -0.16 V vs NHE; there was no corresponding oxidative signal. These two transitions were interdependent, indicating that the reductive wave at -0.16 V represented the regeneration of BH4 from its product of oxidation at +0.27 V. Similar voltammograms were obtained with tetrahydroneopterin and 6,7-dimethyltetrahydropterin, both of which can substitute for BH4 in NOS catalysis. Completely different voltammograms were obtained with 7,8-dihydrobiopterin, sepiapterin, 2'-deoxysepiapterin, and autoxidized BH4. These 7,8-dihydropterins, which do not sustain NOS catalysis, were oxidized at much higher potentials (+0.82-1.04 V vs NHE), and appreciable reduction did not occur between +1.2 and -0.8 V, in line with the concept of a redox role for BH4 in NOS catalysis. However, the electrochemical properties of the potent pterin-site NOS inhibitor 4-amino-BH4 resembled those of BH4, whereas the active pterin cofactor 5-methyl-BH4 was not re-reduced after oxidation. We conclude that the 2-electron redox cycling of the pterin cofactor between BH4 and quinonoid dihydrobiopterin is not essential for NO synthesis. The data are consistent with 1-electron redox cycling between BH4 and the trihydrobiopterin radical BH3(*).  相似文献   

8.
We have determined reduction potentials for porcine mitochondrial general fatty acyl-CoA dehydrogenase (GAD) and electron transfer flavoprotein (ETF) using an anaerobic spectroelectrochemical titration method. Computer simulation techniques were used to analyze the absorbance data. Nernst plots of the simulated data gave E'0, 7.1, quinone/semiquinone = -0.014 V and E'0, 7.1, semiquinone/hydroquinone = -0.036 V for ETF and E'0, 7.1, quinone/semiquinone = -0.155 V and E'0, 7.1, semiquinone/hydroquinone = -0.122 V for GAD. Using these techniques we have also determined a conditional reduction potential of -0.156 V for the chromophore producing fatty acyl-CoA substrate beta-2-furylpropionyl-CoA. From this value and our previous determination of the equilibrium constant for the transhydrogenation reaction between beta-2-furylpropionyl-CoA and the oxidized substrate crotonyl-CoA (Keq = 10.4), we have determined a reduction potential of -0.126 V for the butyryl-CoA/crotonyl-CoA couple. In light of the structural similarity between butyryl-CoA and octanoyl-CoA, the optimal substrate for GAD, the reduction potential for octanoyl-CoA should be similar to that for butyryl-CoA; i.e. fatty acyl-CoA substrates and GAD are essentially isopotential. The ability of octanoyl-CoA to reduce GAD quantitatively (Keq = 9.0) poses a dilemma in light of the nearly equal reduction potentials. We postulate that the stable charge-transfer complex formed between enzyme and optimal product is significantly lower in energy than enzyme and product and thus is responsible for pulling the reaction toward completion.  相似文献   

9.
Redox and spectral properties of flavodoxin from Anabaena 7120   总被引:1,自引:0,他引:1  
We report here on the spectrophotometric and electrochemical properties of the flavodoxin from Anabaena 7120 and compare these properties with those of flavodoxins that have been studied previously. Molar absorption coefficients have been determined for all three oxidation states of this protein, at various wavelengths. For oxidized flavodoxin, molar absorption coefficients for the absorption maxima at 464 and 373 nm were 9200 and 8500 M-1 cm-1, respectively. Reduction by the first electron produced a neutral blue semiquinone which exhibited an absorption maximum at 575 nm. The molar absorption coefficients at 575 nm were 200 M-1 cm-1 for the oxidized form, 5100 M-1 cm-1 for the semiquinone form, and 250 M-1 cm-1 for the hydroquinone form. Redox potentials have been determined, in the pH range of 6.0 to 8.5, for both electron transfers. At pH 7.0, the midpoint potential values for the first and second electron transfers were -0.196 and -0.425 V, respectively. We determined that the first electron transfer is pH dependent and that a proton transfer accompanies this one electron transfer. It was also determined that the second electron transfer is pH independent in the pH range of 6.0 to 8.5.  相似文献   

10.
Studies of the spectral (UV/vis and resonance Raman) and electrochemical properties of the FAD-containing enzyme glutaryl-CoA dehydrogenase (GCD) from Paracoccus denitrificans reveal that the properties of the oxidized enzyme (GCDox) appear to be invariant from those properties known for other acyl-CoA dehydrogenases such as mammalian general acyl-CoA dehydrogenase (GACD) and butyryl-CoA dehydrogenase (BCD) from Megasphaera elsdenii. However, when either free or complexed GCD is reduced, its spectral and electrochemical behavior differs from that of both GACD and BCD. Free GCD does not stabilize any form of one-electron-reduced GCD, but when GCD is complexed to its inhibitor, aceto-acetyl-CoA, the enzyme stabilizes 20% of the blue neutral radical form of FAD (FADH.) upon reduction. Like GACD, when crotonyl-CoA- (CCoA) bound GCD is reduced, the red anionic form of FAD radical (FAD.-) is stabilized, and excess reduction equivalents are necessary to effect full reduction of the complex. A comproportionation reaction is proposed between fully reduced crotonyl-CoA-bound GCD (GCD2e-CCoA) and GCDox-CCoA to partially explain the stabilization of GCD-bound FAD.- by CCoA. When GCD is reduced by its optimal substrate, glutaryl-CoA, a two-electron reduction is observed with concomitant formation of a long-wavelength charge-transfer band. It is proposed that the ETF specific for GCD abstracts one electron from this charge-transfer species and this is followed by the decarboxylation of the oxidized substrate. At pH 6.4, potential values measured for free GCD and GCD bound to acetoacetyl-CoA are -0.085 and -0.129 V, respectively. Experimental evidence is given for a positive shift in the reduction potential of GCD when the enzyme is bound to a 1:1 mixture of butyryl-CoA and CCoA. However, significant GCD hydratase activity is observed, preventing quantitation of the potential shift.  相似文献   

11.
Electron transfer flavoprotein (ETF) from pig liver mitochondria has been purified to homogeneity by a three-step procedure with approx. 10-fold higher yields than previously reported. The purified ETF exhibits an absorption coefficient for the bound FAD of 13.5 mM-1.cm-1 at 436 nm and an isoelectric point of 6.75. Gel filtration, sodium dodecyl sulphate gel electrophoresis and flavin analysis indicate that pig liver ETF is a dimer, composed of non-identical subunits (Mr 38 000 and 32 000) with only one FAD/dimer. Anaerobic reduction by dithionite produces anionic flavin semiquinone as a stable intermediate and establishes the flavin to be the only redox-active chromophore in ETF.  相似文献   

12.
Potentiometric titrations of pig liver electron-transfer flavoprotein (ETF) were performed at pH 7.5 and 4 degrees C, both in the reductive and oxidative directions. Reduction of ETF to the hydroquinone form required a total of two reducing equivalents/mol of ETF with the formation of sub-stoichiometric amounts of anionic semiquinone as an intermediate. The oxidation-reduction potentials for the two one-electron couples, oxidized ETF/ETF semiquinone and ETF semiquinone/fully reduced ETF, are +4 mV and -50 mV respectively. The overall midpoint potential for the two-electron couple (oxidized ETF/fully reduced ETF) is -23 mV.  相似文献   

13.
The absolute action spectrum of Escherichia coli DNA photolyase was determined in vitro. In vivo the photoreactivation cross-section (epsilon phi) is 2.4 X 10(4) M-1 cm-1 suggesting that the quantum yield (phi) is about 1.0 if one assumes that the enzyme has the same spectral properties (e.g. epsilon 384 = 1.8 X 10(4) M-1 cm-1) in vivo as those of the enzyme purified to homogeneity. The relative action spectrum of the pure enzyme (blue enzyme that contains FAD neutral semiquinone radical) agrees with the relative action spectrum for photoreactivation of E. coli, having lambda max = 384 nm. However, the absolute action spectrum of the blue enzyme yields a photoreactivation cross-section (epsilon phi = 1.2 X 10(3) at 384 nm) that is 20-fold lower than the in vivo values indicative of an apparent lower quantum yield (phi approximately equal to 0.07) in vitro. Reducing the enzyme with dithionite results in reduction of the flavin semiquinone and a concomitant 12-15-fold increase in the quantum yield. These results suggest that the flavin cofactor of the enzyme is fully reduced in vivo and that, upon absorption of a single photon in the 300-500 nm range, the photolyase chromophore (which consists of reduced FAD plus the second chromophore) donates an electron to the pyrimidine dimer causing its reversal to two pyrimidines. The reduced chromophore is regenerated at the end of the photochemical step thus enabling the enzyme to act catalytically.+  相似文献   

14.
Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.  相似文献   

15.
C Pace  M Stankovich 《Biochemistry》1986,25(9):2516-2522
This is the first report of the redox potentials of glycolate oxidase. The pH dependence of the redox behavior as well as the effects of activators and inhibitors was studied. At pH 7.1 in 10 mM imidazole-chloride, Eo1' (EF1ox/EF1-.) is -0.033 +/- 0.010 V and Eo2' (EF1-./EF1redH-) is -0.017 +/- 0.017 V vs. the standard hydrogen electrode at 10 degrees C. A maximum of 29% flavin mononucleotide (FMN) anion radical is stabilized at half-reduction at pH 7.1 and 10 degrees C. Both redox couples of glycolate oxidase are pH-dependent from pH 7 to pH 9, and the FMN anion radical is stabilized in this range. The redox potentials of glycolate oxidase are shifted markedly positive of those of unbound FMN, consistent with the enzyme's function. The midpoint potential of glycolate oxidase is more positive than that of the glyoxalate/glycolate couple, and two-electron reduction of glycolate oxidase is thermodynamically favorable. The redox behavior of glycolate oxidase markedly contrasts that of other flavoprotein oxidases. For most flavoprotein oxidases, Eo1' is independent of pH from pH 7 to pH 9 and is much more positive than Eo2', which is pH-dependent. We present a mechanism that suggests a structural basis for the positive shifts and pH dependence of both Eo1' and Eo2' of glycolate oxidase.  相似文献   

16.
The oxidation-reduction midpoint potentials, Em, of the FAD and active site disulfide couples of Escherichia coli thioredoxin reductase have been determined from pH 5.5 to 8.5. The FAD and disulfide couples have similar Em values and thus a linked equilibrium of four microscopic enzyme oxidation-reduction states exists. The binding of phenylmercuric acetate to one enzyme form could be monitored which allowed solving the four microscopic Em values. The Em values at pH 7.0 and 12 degrees C of the four couples of thioredoxin reductase are: (S)2-enzyme-FAD/FADH2 = -0.243 V, (SH)2-enzyme-FAD/FADH2 = -0.260 V, (FAD)-enzyme-(S)2/(SH)2 = -0.254 V, and (FADH2)-enzyme-(S)2/(SH)2 = -0.271 V. Thus, at pH 7.0, the FAD and disulfide moieties have a 0.017-V negative interaction and Em values which are different by 0.011 V. The delta Em/delta pH of the FAD couples E2m and E3m are about 0.060 V/pH throughout the pH range studied, showing an approximately 2-proton stoichiometry of reduction of the enzyme FAD. The delta Em/delta pH of the disulfide couples E1m and E4m are about 0.052 V/pH from pH 5.5 to 8.5, showing an apparently nonintegral proton stoichiometry of reduction of 1.8 in this pH range. This proton stoichiometry suggests the presence of a base with an ionization behavior that is linked to the oxidation-reduction state of the disulfide. A novel method is presented for determining the pK values on oxidized and reduced enzyme which agrees with the less accurate classical method. The proton stoichiometry results are consistent with the presence of a thiol-base ion pair in which the pK of the base is elevated from 7.6 in disulfide containing enzyme to greater than 8.5 upon forming an ion pair with a thiol anion of pK 7.0 generated upon reduction of the disulfide. The fluorescence of the FAD in thioredoxin reductase decreases as the pH is lowered with a pK of 7.0, direct evidence for a base near the FAD probably distinct from the base interacting with the dithiol.  相似文献   

17.
A stable apoprotein has been prepared from a soluble purified bovine thyroid iodotyrosine deiodinase, previously shown to be an FMN-containing flavoprotein requiring dithionite for enzymatic activities. The apoprotein binds FMN (Ka = 1.47 x 10(8) M-1) with an almost complete restoration of enzymatic activity. It can also bind FAD (Ka = 0.58 x 10(8) M-1) with partial restoration of activity, but does not bind riboflavin. Photoreduction of the holoenzyme in presence of excess of its free cofactor, FMN, supported enzyme activity at a level of 50% of that obtained with dithionite; substituting FAD or riboflavin for FMN produced, respectively, 20 and 11% of the dithionite-supported activity. The oxidation-reduction potential (E1) of the couple semiquinone/fully reduced enzyme is -0.412 V at pH 7 and 25 degrees C. The value (E2) for the oxidized/semiquinone couple is -0.190 V at pH 7 and 25 degrees C. Potentiometric titrations with sodium hydrosulfite suggests that the enzyme is reduced in two successive 1-electron oxidation-reduction steps. Effects of pH on E1 suggest ionization of the protonated flavin with an ionization constant of 5.7 x 10(-7). The highly negative oxidation-reduction potential for the fully reduced enzyme species and the apparent requirement for full reduction for enzymatic activity suggests that in NADPH-mediated microsomal deiodination an NADPH-linked electron carrier of suitably negative midpoint potential is a probable intermediate.  相似文献   

18.
A comparative study using laser flash photolysis of the kinetics of reduction and intramolecular electron transfer among the redox centers of chicken liver xanthine dehydrogenase and of bovine milk xanthine oxidase is described. The photogenerated reductant, 5-deazariboflavin semiquinone, reacts with the dehydrogenase (presumably at the Mo center) in a second-order manner, with a rate constant (k = 6 x 10(7) M-1 s-1) similar to that observed with the oxidase [k = 3 x 10(7) M-1 s-1; Bhattacharyya et al. (1983) Biochemistry 22, 5270-5279]. In the case of the dehydrogenase, neutral FAD radical formation is found to occur by intramolecular electron transfer (kobs = 1600 s-1), presumably from the Mo center, whereas with the oxidase the flavin radical forms via a bimolecular process involving direct reduction by the deazaflavin semiquinone (k = 2 x 10(8) M-1 s-1). Biphasic rates of Fe/S center reduction are observed with both enzymes, which are due to intramolecular electron transfer (kobs approximately 100 s-1 and kobs = 8-11 s-1). Intramolecular oxidation of the FAD radical in each enzyme occurs with a rate constant comparable to that of the rapid phase of Fe/S center reduction. The methylviologen radical, generated by the reaction of the oxidized viologen with 5-deazariboflavin semiquinone, reacts with both the dehydrogenase and the oxidase in a second-order manner (k = 7 x 10(5) M-1 s-1 and 4 x 10(6) M-1 s-1, respectively). Alkylation of the FAD centers results in substantial alterations in the kinetics of the reaction of the viologen radical with the oxidase but not with the dehydrogenase. These results suggest that the viologen radical reacts directly with the FAD center in the oxidase but not in the dehydrogenase, as is the case with the deazaflavin radical. The data support the conclusion that the environments of the FAD centers differ in the two enzymes, which is in accord with other studies addressing this problem from a different perspective [Massey et al. (1989) J. Biol. Chem. 264, 10567-10573]. In contrast, the rate constants for intramolecular electron transfer among the Mo, FAD, and Fe/S centers in the two enzymes (where they can be determined) are quite similar.  相似文献   

19.
The reduction kinetics of NADPH:cytochrome P-450 reductase have been investigated by the laser flash photolysis technique, using the semiquinone of 5-deazariboflavin (5-dRfH.) as the reductant. Transients observed at 470 nm at neutral pH indicated that the oxidized reductase was reduced via second-order kinetics with a rate constant of 6.8 X 10(7) M-1 s-1. The second-order rate constant corresponding to the formation of the protein-bound semiquinone (measured at 585 nm) was essentially the same as that obtained at 470 nm (7.1 X 10(7) M-1 s-1). Subsequent to this rapid formation of protein-bound semiquinone, a partial exponential decay was observed at 585 nm. The rate of this decay remained invariant with protein concentration between pH 5.0 and 7.0, and a first-order rate constant of 70 s-1 was obtained for this process. This is assigned to intramolecular electron transfer from FADH. to FMN. Prior reduction of the enzyme to the one-electron level led to a decrease in both the second-order rate constant for reduction (2 X 10(7) M-1 s-1) and the first-order intraflavin electron transfer rate constant (15 s-1). The protein-bound FAD moiety of FMN-depleted reductase was reduced by 5-dRfH. with a second-order rate constant that was identical with that observed with the native enzyme (6.9 X 10(7) M-1 s-1). However, with this species no significant decay of the FAD semiquinone was observed at 585 nm following its rapid formation, consistent with the above assignment of this kinetic process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The thermodynamic and catalytic properties of flavocytochrome c3 from Shewanella frigidimarina have been studied using a combination of protein film voltammetry and solution methods. As measured by solution kinetics, maximum catalytic efficiencies for fumarate reduction (kcat/Km = 2.1 x 10(7) M-1 s-1 at pH 7.2) and succinate oxidation (kcat/Km = 933 M-1 s-1 at pH 8.5) confirm that flavocytochrome c3 is a unidirectional fumarate reductase. Very similar catalytic properties are observed for the enzyme adsorbed to monolayer coverage at a pyrolytic graphite "edge" electrode, thus confirming the validity of the electrochemical method for providing complementary information. In the absence of fumarate, the adsorbed enzyme displays a complex envelope of reversible redox signals which can be deconvoluted to yield the contributions from each active site. Importantly, the envelope is dominated by the two-electron signal due to FAD [E degrees ' = -152 mV vs the standard hydrogen electrode (SHE) at pH 7.0 and 24 degrees C] which enables quantitative examination of this center, the visible spectrum of which is otherwise masked by the intense absorption bands due to the hemes. The FAD behaves as a cooperative two-electron center with a pH-dependent reduction potential that is modulated (pKox at 6.5) by ionization of a nearby residue. In conjunction with the kinetic pKa values determined for the forward and reverse reactions (7.4 and 8.6, respectively), a mechanism for fumarate reduction, incorporating His365 and an anionic form of reduced FAD, is proposed. The reduction potentials of the four heme groups, estimated by analysis of the underlying envelope, are -102, -146, -196, and -238 mV versus the SHE at pH 7.0 and 24 degrees C and are comparable to those determined by redox potentiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号