首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cloning of the gene for Escherichia coli glutamyl-tRNA synthetase   总被引:1,自引:0,他引:1  
H Sanfa?on  S Levasseur  P H Roy  J Lapointe 《Gene》1983,22(2-3):175-180
The structural gene for the glutamyl-tRNA synthetase of Escherichia coli has been cloned in E. coli strain JP1449, a thermosensitive mutant altered in this enzyme. Ampicillin-resistant and tetracycline-sensitive thermoresistant colonies were selected following the transformation of JP1449 by a bank of hybrid plasmids containing fragments from a partial Sau3A digest of chromosomal DNA inserted into the BamHI site of pBR322. One of the selected clones, HS7611, has a level of glutamyl-tRNA synthetase activity more than 20 times higher than that of a wild-type strain. The overproduced enzyme has the same molecular weight and is as thermostable as that of a wild-type strain, indicating that the complete structural gene is present in the insert. These characteristics were lost by curing this clone of its plasmid with acridine orange, and were transferred with high efficiency to the mutant strain JP1449 by transformation with the purified plasmid. A physical map of the plasmid, which contains an insert of about 2.7 kb in length, is presented.  相似文献   

2.
In the presence or absence of its regulatory factor, the monomeric glutamyl-tRNA synthetase from Bacillus subtilis can aminoacylate in vitro with glutamate both tRNAGlu and tRNAGln from B. subtilis and tRNAGln1 but not tRNAGln2 or tRNAGlu from Escherichia coli. The Km and Vmax values of the enzyme for its substrates in these homologous or heterologous aminoacylation reactions are very similar. This enzyme is the only aminoacyl-tRNA synthetase reported to aminoacylate with normal kinetic parameters two tRNA species coding for different amino acids and to misacylate at a high rate a heterologous tRNA under normal aminoacylation conditions. The exceptional lack of specificity of this enzyme for its tRNAGlu and tRNAGln substrates, together with structural and catalytic peculiarities shared with the E. coli glutamyl- and glutaminyl-tRNA synthetases, suggests the existence of a close evolutionary linkage between the aminoacyl-tRNA synthetases specific for glutamate and those specific for glutamine. A comparison of the primary structures of the three tRNAs efficiently charged by the B. subtilis glutamyl-tRNA synthetase with those of E. coli tRNAGlu and tRNAGln2 suggests that this enzyme interacts with the G64-C50 or G64-U50 in the T psi stem of its tRNA substrates.  相似文献   

3.
The glutamyl-tRNA synthetase from Bacillus subtilis has been purified to homogeneity. It is a monomer of Mr = 65,500 whose NH2-terminal sequence is Met-Asn-Glu-Val-Arg-Val-Arg-Tyr-Ser-Pro-Ser-Pro-Thr-Gly-His-Leu. The number of tryptic peptides indicates the absence of a significant amount of sequence duplication. Under certain conditions, this monomeric enzyme is co-purified with a polypeptide beta of Mr = 46,000, which increases the affinity of the enzyme about 10-fold for glutamate and for ATP, and stabilizes it against heat inactivation. gamma-Globulins prepared against the monomeric enzyme can inhibit completely the glutamyl-tRNA synthetase activity of a B. subtilis extract and precipitate from this extract both the monomeric enzyme and the regulatory factor beta. These anti-alpha immunoglobulins do nt precipitate pure beta. These results show that the glutamyl-tRNA synthetase of B. subtilis has a structure similar to that of the Escherichia coli enzyme (Lapointe, J., and S?ll, D. (1972) J. Biol. Chem. 247, 4966-4974) and indicate that the beta factor has a function in the regulation of glutamyl-tRNA biosynthesis in vivo.  相似文献   

4.
The gltX gene encoding the glutamyl-tRNA synthetase of Escherichia coli and adjacent regulatory regions was isolated and sequenced. The structural gene encodes a protein of 471 amino acids whose molecular weight is 53,810. The codon usage is that of genes highly expressed in E. coli. The amino acid sequence deduced from the nucleotide sequence of the gltX gene was confirmed by mass spectrometry of large peptides derived from the glutamyl-tRNA synthetase. The observed peptides confirm 73% of the predicted sequence, including the NH2-terminal and the COOH-terminal segments. Sequence homology between the glutamyl-tRNA synthetase and other aminoacyl-tRNA synthetases of E. coli was found in four segments. Three of them are aligned in the same order in all the synthetases where they are present, but the intersegment spacings are not constant; these ordered segments may come from a progenitor to which other domains were added. Starting from the NH2-end, the first two segments are part of a longer region of homology with the glutaminyl-tRNA synthetase, without need for gaps; its size, about 100 amino acids, is typical of a single folding domain. In the first segment, containing sequences homologous to the HIGH consensus, the homology is consistent with the following evolutionary linkage: gltX----glnS----metS----ileS and tyrS.  相似文献   

5.
The glutamyl-tRNA synthetase has been purified to homogeneity from Escherichia coli with a yield of about 50%. It is a monomer with a molecular weight of 56,000 and has the same kinetic properties as those of the alpha chain of the dimeric alphabeta-glutamyl-tRNA synthetase described previously (Lapointe, J., and S?ll, D. (1972) J. Biol. Chem. 247, 4966-4974). It is the smallest amino-acyl-tRNA synthetase purified from E. coli and contains no important sequence repetition. It is also the only monomeric aminoacyl-tRNA synthetase reported so far to contain no major sequence duplication. Considering its structural and mechanistic similarities with the glutaminyl- and the arginyl-tRNA synthetases of E. coli, we propose the existence of a relation between the true monomeric character of the glutamyl-tRNA synthetase (as opposed to monomers with sequence duplications) and its requirement for tRNA in the activation of glutamate. A single sulfhydryl group of the native enzyme reacts with 5,5'-dithiobis(2-nitrobenzoic acid) causing no loss of enzymatic activity, whereas four such groups per enzyme react in the presence of 4 M guanidine HCl.  相似文献   

6.
The glutamyl-tRNA synthetase (gltX) gene from Pseudomonas aeruginosa was identified. A plasmid containing a 2.3-kb insert complemented the temperature-sensitive gltX mutation of Escherichia coli JP1449, and GltX activity was demonstrated. The inferred amino acid sequence of this gene showed 50.6% identity with GltX from Rhizobium meliloti.  相似文献   

7.
8.
D Kern  J Lapointe 《Biochemistry》1979,18(26):5809-5818
The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which glutamate-accepting tRNAGlu is associated. By use of modified E. coli tRNAsGlu and heterologous tRNAsGlu, a correlation could be established between the ability of tRNAGlu to be aminoacylated by glutamyl-tRNA synthetase and its abilities to promote the [32P]PPi-ATP isotope exchange and the binding of glutamate to the synthetase. These results give a possible explanation for the inability of blutamyl-tRNA synthetase to catalyze the isotope exchange in the absence of amino acid accepting tRNAGlu and for the failure to detect an enzyme-adenylate complex for this synthetase by using the usual approaches. One binding site was detected for each substrate. The specificity of the interaction of the various substrates has been further investigated. Concerning ATP, inhibition studies of the aminoacylation reaction by various analogues showed the existence of a synergistic effect between the adenine and the ribose residues for the interaction of adenosine. The primary recognition of ATP involves the N-1 and the 6-amino group of adenine as well as the 2'-OH group of ribose. This first interaction is then strengthened by the phosphate groups- Inhibition studies by various analogues of glutamate showed a strong decrease in the affinity of this substrate for the synthetase after substitution of the alpha- or gamma-carboxyl groups. The enzyme exhibits a marked tendency to complex tRNAs of other specificities even in the presence of tRNAGlu. MgCl2 and spermidine favor the specific interactions. The influence of monovalent ions and of pH on the interaction between glutamyl-tRNA synthetase and tRNAGlu is similar to those reported for other synthetases not requiring their cognate tRNA to bind the amino acid. Finally, contrary to that reported for other monomeric synthetases, no dimerization of glutamyl-tRNA synthetase occurs during the catalytic process.  相似文献   

9.
A recombinant bacteriophage containing the intact Bacillus brevis gene for gramicidin S synthetase 1, grsA, and the 5' end of the gramicidin S synthetase 2 gene, grsB, was identified by screening an EMBL3 library with anti-GrsA antibodies. This clone, EMBL315, has a 14-kilobase (kb) insert that hybridizes to the previously isolated 3.9-kb fragment of the grsB gene, which encodes the 155-kilodalton ornithine-activating domain of gramicidin S synthetase 2. Deletion and subcloning experiments with the 14-kb insert located the grsA structural gene and its putative promoter on a 4.5-kb PvuII fragment which encoded the full-length 120-kilodalton protein in Escherichia coli. In addition, hybridization analysis revealed that the 5' end of the grsB gene is located approximately 3 kb from the grsA structural gene. Furthermore, these studies indicated that grsA and grsB are transcribed in opposite orientations.  相似文献   

10.
Dasgupta S  Manna D  Basu G 《FEBS letters》2012,586(12):1724-1730
Nucleotides whose mutations seriously affect glutamylation efficiency are experimentally known for Escherichia coli tRNA(Glu). However, not much is known about functional hotspots on the complementary enzyme, glutamyl-tRNA synthetase (GluRS). From structural and functional studies on an Arg266Leu mutant of E. coli GluRS, we demonstrate that Arg266 is essential for efficient glutamylation of tRNA(Glu). Consistent with this result, we found that Arg266 is a conserved signature of proteobacterial GluRS. In contrast, most non-proteobacterial GluRS contain Leu, and never Arg, at this position. Our results imply a unique strategy of glutamylation of tRNA(Glu) in proteobacteria under phylum-specific evolutionary compulsions.  相似文献   

11.
The gltX gene, coding for the glutamyl-tRNA synthetase of Rhizobium meliloti A2, was cloned by using as probe a synthetic oligonucleotide corresponding to the amino acid sequence of a segment of the glutamyl-tRNA synthetase. The codons chosen for this 42-mer were those most frequently used in a set of R. meliloti genes. DNA sequence analysis revealed an open reading frame of 484 codons, encoding a polypeptide of Mr 54,166 containing the amino acid sequences of an NH2-terminal and various internal fragments of the enzyme. Compared with the amino acid sequence of the glutamyl-tRNA synthetase of Escherichia coli, the N-terminal third of the R. meliloti enzyme was strongly conserved (52% identity); the second third was moderately conserved (38% identity) and included a few highly conserved segments, whereas no significant similarity was found in the C-terminal third. These results suggest that the C-terminal part of the protein is probably not involved in the recognition of substrates, a feature shared with other aminoacyl-tRNA synthetases.  相似文献   

12.
A glutamyl-tRNA synthetase has been purified to homogeneity from Rhizobium meliloti, using reversed-phase chromatography as the last step. Amino acid sequencing of the amino-terminal region of the enzyme indicates that it contains a single polypeptide, whose molecular weight is about 54,000, as judged by SDS-gel electrophoresis. The primary structures of the amino-terminus region and of an internal peptide obtained by cleavage of the enzyme with CNBr have similarities of 58 and 48% with regions of the glutamyl-tRNA synthase of Escherichia coli; these are thought to be involved in the binding of ATP and tRNA, respectively. The small amount of glutamyl-tRNA synthetase present in R. meliloti is consistent with the metabolic regulation of the biosynthesis of many aminoacyl-tRNA synthetases.  相似文献   

13.
5'-O-[N-(L-glutamyl)-sulfamoyl] adenosine is a potent competitive inhibitor of E. coli glutamyl-tRNA synthetase with respect to glutamic acid (K(i) = 2.8 nM) and is the best inhibitor of this enzyme. It is a weaker inhibitor of mammalian glutamyl-tRNA synthetase (K(i) = 70 nM). The corresponding 5'-O-[N-(L-pyroglutamyl)-sulfamoyl] adenosine is a weak inhibitor (K(i) = 15 microM) of the E. coli enzyme.  相似文献   

14.
The levels of glutamate synthase and of glutamine synthetase are both derepressed 10-fold in strain JP1449 of Escherichia coli carrying a thermosensitive mutation in the glutamyl-transfer ribonucleic acid (tRNA) synthetase and growing exponentially but at a reduced rate at a partially restrictive temperature, compared with the levels in strain AB347 isogenic with strain JP1449 except for this thermosensitive mutation and the marker aro. These two enzymes catalyze one of the two pathways for glutamate biosynthesis in E. coli, the other being defined by the glutamate dehydrogenase. We observed a correlation between the percentage of charged tRNAGlu and the level of glutamate synthase in various mutants reported to have an altered glutamyl-tRNA synthetase activity. These results suggest that a glutamyl-tRNA might be involved in the repression of the biosynthesis of the glutamate synthase and of the glutamine synthetase and would couple the regulation of the biosynthesis of these two enzymes, which can work in tandem to synthesize glutamate when the ammonia concentration is low in E. coli but whose structural genes are quite distant from each other. No derepression of the level of the glutamate dehydrogenase was observed in mutant strain JP1449 under the conditions where the levels of the glutamine synthetase and of the glutamate synthase were derepressed. This result indicates that the two pathways for glutamate biosynthesis in E. coli are under different regulatory controls. The glutamate has been reported to be probably the key regulatory element of the biosynthesis of the glutamate dehydrogenase. Our results indicate that the cell has chosen the level of glutamyl-tRNA as a more sensitive probe to regulate the biosynthesis of the enzymes of the other pathway, which must be energized at a low ammonia concentration.  相似文献   

15.
A fusion protein containing a Drosophila choline acetyltransferase (ChAT) cDNA insert was purified from a lambda gtll lysate of Escherichia coli. The cDNA insert, which contained a 728-amino acid coding region for ChAT, was used for immunizing rabbits. Three different antisera were produced that could recognize native Drosophila ChAT with low titer. In addition, all three antisera stained enzyme polypeptides using the Western blot technique at high titers. The antisera recognized ChAT polypeptides with molecular masses of 67 and 54 kilodaltons in Western blots of partially purified enzyme; these polypeptides had previously been identified using monoclonal anti-ChAT antibodies and are the major components of completely purified enzyme. It was surprising that when these antisera were used to stain Western blots of Drosophila head homogenates, the major immunoreactive band had a molecular mass of 75 kilodaltons. The relationship of this 75-kilodalton polypeptide to ChAT activity was investigated by fractionating fresh fly head homogenates using rapid HPLC gel filtration chromatography. Analysis of column fractions for enzyme activity and immunoreactive polypeptides indicated that the 75- and 67-kilodalton polypeptides can be resolved and are both enzymatically active. In addition, a correlation was observed between the relative immunostaining intensities of both the 75- and 67-kilodalton bands and ChAT activity when supernatants from fresh fly head homogenates were autolyzed at 37 degrees C. Our results indicate that ChAT is present in fresh Drosophila heads primarily as an active enzyme with a molecular mass of 75 kilodaltons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In its tRNA acceptor end binding domain, the glutamyl-tRNA synthetase (GluRS) of Escherichia coli contains one atom of zinc that holds the extremities of a segment (Cys98-x-Cys100-x24-Cys125-x-His127) homologous to the Escherichia coli glutaminyl-tRNA synthetase (GlnRS) loop where a leucine residue stabilizes the peeled-back conformation of tRNAGln acceptor end. We report here that the GluRS zinc-binding region belongs to the novel SWIM domain family characterized by the signature C-x-C-xn-C-x-H (n = 6-25), and predicted to interact with DNA or proteins. In the presence of tRNAGlu, the GluRS C100Y variant has a lower affinity for l-glutamate than the wild-type enzyme, with Km and Kd values increased 12- and 20-fold, respectively. On the other hand, in the absence of tRNAGlu, glutamate binds with the same affinity to the C100Y variant and to wild-type GluRS. In the context of the close structural and mechanistic similarities between GluRS and GlnRS, these results indicate that the GluRS SWIM domain modulates glutamate binding to the active site via its interaction with the tRNAGlu acceptor arm. Phylogenetic analyses indicate that ancestral GluRSs had a strong zinc-binding site in their SWIM domain. Considering that all GluRSs require a cognate tRNA to activate glutamate, and that some of them have different or no putative zinc-binding residues in the corresponding positions, the properties of the C100Y variant suggest that the GluRS SWIM domains evolved to position correctly the tRNA acceptor end in the active site, thereby contributing to the formation of the glutamate binding site.  相似文献   

17.
The cloning of the gene for Escherichia coli PL-2 2-keto-3-deoxy-D-manno-octonate 8-phosphate synthetase is reported. Positive transformants showed an increase of approximately three-fold in specific activity of the enzyme both in E. coli and in Salmonella typhimurium as host cells. A subclone containing a 1.5-kilobase PvuII fragment overproduced active enzyme. Minicell experiments that allow the detection of plasmid encoded proteins revealed an insert-coded single protein band of 34 kilodaltons.  相似文献   

18.
The glutamyl-tRNA synthetase (EC 6.1.1.17) of Escherichia coli was purified to homogeneity from the overproducing strain DH5 alpha(pLQ7612) by a two-step procedure that takes only about 6 h and yields 10 mg of enzyme per gram of wet cells. The process consists of a two-phase polyethylene glycol-dextran partition, the top phase of which is diluted and directly applied to an anion-exchange FPLC MonoQ column. The purified enzyme has a specific activity about twice that of the same enzyme purified to homogeneity by the lengthy conventional procedure from either a normal strain or this overproducing strain. This difference is discussed in relation to the generation of microheterogeneity in proteins during their purification.  相似文献   

19.
Glutamyl-tRNA synthetase from Chlamydomonas reinhardtii was purified by sequential column chromatography on DEAE-cellulose, phosphocellulose, Mono Q, and Mono S. The apparent molecular mass of the protein when analyzed under both denaturing conditions (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation on glycerol gradients) was 62,000 Da; this indicates that the active enzyme is a monomer. The purified glutamyl-tRNA synthetase was identified as the chloroplast enzyme by its tRNA charging specificity. Reversed-phase chromatography of unfractionated C. reinhardtii tRNA resolved four peaks of glutamate acceptor RNA when assayed with the purified enzyme. The enzyme can also glutamylate Escherichia coli tRNA(2Glu), but not cytoplasmic tRNA(Glu) from yeast or barley. In addition, the enzyme misacylates chloroplast tRNA(Gln) with glutamate. A similar mischarging phenomenon has been demonstrated for the barley chloroplast enzyme (Sch?n, A., Kannangara, C.G., Gough, S., and S?ll, D. (1988) Nature 331, 187-190) and for Bacillus subtilis glutamyl-tRNA synthetase (Proulx, M., Duplain, L., Lacoste, L., Yaguchi, M., and Lapointe, J. (1983) J. Biol. Chem. 258, 753-759).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号