首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
PREDATION AND KLEPTOPARASITISM BY SKUAS IN A SHETLAND SEABIRD COLONY   总被引:2,自引:0,他引:2  
Malte  Andersson 《Ibis》1976,118(2):208-217
Feeding methods and relations of Great Skuas and Arctic Skuas to prey were studied in a seabird colony at Hermaness, Shetland. Great Skuas obtained food by kleptoparasitism, predation and scavenging. They induced Gannets to regurgitate by interfering with their flight; grasping the Gannet by the wing or tail or pushing it down with the feet on its back. Gannets tried to escape by descending to the surface, and regurgitated during 12% of the chases, most frequently when pursued by several birds. Great Skuas caught Puffins by swooping at flocks in the colony. Puffins flying with fish to their young were also chased, releasing food on one fifth of the attacks, or escaping down to the sea and diving. Great Skuas also took Kittiwake nestlings by hovering and grasping the chick with the bill, killing and eating it on the surface. Adult Kittiwakes from nearby nests took to the air, mobbing the predator. More Kittiwakes were engaged in mobbing at unsuccessful than at successful predation attempts, indicating that colonial breeding may be of selective value under such predation. Two different estimates pointed to a Kittiwake nestling predation of 0–12 and 014 young per pair. Fledging success of Kittiwakes was estimated at 0–87-1-06 young per pair, considerably lower than at English colonies where predators are absent. In spite of the predation, the Kittiwake colony showed no signs of decrease. Agonistic behaviour and other evidence indicate that Great Skuas defend feeding territories at the seabird colony. Skuas, gulls and Fulmars competed for food at carcasses. Fulmars dominated and chased away skuas. Arctic Skuas deprived Puffins of food. They patrolled the cliff, intercepting Puffins arriving with fish, snatching it from their victim's bill, or inducing them to release fish. Puffins continuing their inward flight lost food more often (30%) than birds descending to the sea (15%)—sometimes diving below. This opportunity to escape may explain the lower success of skuas at Hermaness than at a Puffin colony farther inland from the shore (Grant 1971). Other factors being equal, proximity to the sea may thus reduce the risk of kleptoparasitism.  相似文献   

2.
Social foraging provides several benefits for individuals but also bears the potential costs of higher competition. In some species, such competition arises through kleptoparasitism, that is when an animal takes food which was caught or collected by a member of its social group. Except in the context of caching, few studies have investigated how individuals avoid kleptoparasitism, which could be based on physical strength/dominance but also cognitive skills. Here, we investigated the foraging success of wild common ravens, Corvus corax, experiencing high levels of kleptoparasitism from conspecifics when snatching food from the daily feedings of captive wild boars in a game park in the Austrian Alps. Success in keeping the food depended mainly on the individuals’ age class and was positively correlated with the time to make a decision in whether to fly off with food or consume it on site. While the effect of age class suggests that dominant and/or experienced individuals are better in avoiding kleptoparasitism, the effect of decision time indicates that individuals benefit from applying cognition to such decision-making, independently of age class. We discuss our findings in the context of the ecological and social intelligence hypotheses referring to the development of cognitive abilities. We conclude that investigating which factors underline kleptoparasitism avoidance is a promising scenario to test specific predictions derived from these hypotheses.  相似文献   

3.
The densities of microtine rodents and their main predators,small mustelids, fluctuate synchronously in 3–5-year cyclesin central and northern Fennoscandia. Predation by small mustelidshas been suggested as one of the driving forces in microtinecyclicity, causing deep synchronous declines of several volespecies. We studied experimentally the effects of small mustelidson mating behavior, foraging, and breeding in nonwintered fieldvoles (Microtus agrestis) originating from a cyclic population.By using mustelid odors, we simulated a crash phase environmentwith high predation risk for breeding pairs of voles. In ourexperiments, 87% of the female field voles suppressed breedingwhen exposed to mustelid odors. Both female and male behaviorchanged, and no mating behaviors were observed under the simulatedpredation risk. Weights of both sexes decreased when exposedto mustelid odor, probably due to decreased foraging; weightsof the control females increased due to pregnancy; and no weightchanges occurred in control males. Decreased breeding and foragingpossibilities under high predation pressure may form the basisfor the ultimate explanation for breeding suppression. Thereare at least two different mechanisms for breeding suppression:either mating does not take place or malnutrition in femalesdoes not' allow breeding to occur. Delayed breeding under highrisk of predation, for whatever reason, could increase the probabilityof individuals, especially that of the females, to survive overthe crash to the next, safer breeding season when their youngwould have better possibilities to survive.  相似文献   

4.
Individuals foraging in groups should develop behavioural tactics to optimise their gain. In novel feeding situations, predation risk and pressure of kleptoparasites may be particularly high and hence may constrain optimal foraging. To create a novel feeding situation, we offered common ravens (Corvus corax) equal numbers of either small (40 g) or large (160 g) pieces of meat on successive days, always in combination with the same novel object. During the first weeks, when ravens were still neophobic, small pieces were taken in larger numbers than large pieces. Intraspecific kleptoparasitism was more likely to occur when ravens carried large food items. It seems that initiating foragers were mainly innovative subdominants. Preference for small items might have decreased with increasing habituation because more dominants were then feeding directly at the source and hence were less likely to resort to kleptoparasitism as an alternative foraging tactic. Electronic Publication  相似文献   

5.
We used a factorial experiment to examine interacting effectsof male density, female density, and sunfish (predation risk)on mating dynamics of the stream water strider (Aquarius remigis).Many of our results corroborated earlier studies on the isolatedeffects of each factor on mating behavior. The effect of eachfactor, however, depended on the other factors. For example,in low density pools, predation risk decreased male generalactivity, male/female harassment rates, mating activity, andmating duration and increased the large male mating advantage.At higher densities, however, water striders apparently enjoyed"safety in numbers" and did not alter their mating dynamicsin response to the presence of predators. Female activity showeda particularly complex response to male density and fish. Whenmales were scarce, fish caused females to reduce their activity.However, when males were abundant, fish increased female activity,probably because fish decreased male activity thus releasingfemales from harassment by males. The three treatment factorsalso had interacting effects on male mating success. In theabsence of fish, when females were scarce, increased male densityresulted in a decrease in mean male mating success; however,when females were abundant, increased male density enhancedmean male mating success. In contrast, in the presence of fish,male density had little effect on male mating success. Manyof the observed mating patterns can be explained by the effectsof ecological and social factors on male/female conflicts; thatis, on male harassment of females and female reluctance to mate.  相似文献   

6.
Territorial males may adopt a mating tactic that yields greater reproductive success but that at the same time increases the risk of predation. Plasticity in reproductive behavior can reflect a balance between sexual selection and natural selection. In this study, we sought to verify the effect of predation risk on territorial behavior of males of the solitary bee Ptilothrix fructifera (Apidae). Males of the species employ alternative mating tactics and can be territorial in defense of larval food sources. By manipulating predator models in the field, we tested whether (1) males avoid perch flowers containing predator models; (2) males alternate between mating tactics when their territory is associated with a predation risk; and (3) female foraging on flowers in a territory is altered in the presence of a predator model. We measured the responses of males and females in flowers containing and not containing a model of a spider or a stuffed bird. The results show that territorial males of P. fructifera alter their territorial behavior when faced with a high risk of predation. They do not abandon their territory or change to a non‐territorial mating tactic, but instead change the use of their territory, avoiding flowers containing predator models or perching on other flowers when the previous flower presented a potential predation risk. Female P. fructifera decreases the frequency of their visits to flowers and the length of time spent there in the presence of a spider model. In short, in the face of predation risk, females and males alter their behaviors at the cost of less efficient foraging and searching for partners, respectively.  相似文献   

7.
Understanding how animals select for habitat and foraging resources therein is a crucial component of basic and applied ecology. The selection process is typically influenced by a variety of environmental conditions including the spatial and temporal variation in the quantity and quality of food resources, predation or disturbance risks, and inter‐ and intraspecific competition. Indeed, some of the most commonly employed ecological theories used to describe how animals choose foraging sites are: nutrient intake maximisation, density‐dependent habitat selection, central‐place foraging, and predation risk effects. Even though these theories are not mutually exclusive, rarely are multiple theoretical models considered concomitantly to assess which theory, or combination thereof, best predicts observed changes in habitat selection over space and time. Here, we tested which of the above theories best‐predicted habitat selection of Svalbard‐breeding pink‐footed geese at their main spring migration stopover site in mid‐Norway by computing a series of resource selection functions (RSFs) and their predictive ability (k‐fold cross validation scores). At this stopover site geese fuel intensively as a preparation for breeding and further migration. We found that the predation risk model and a combination of the density‐dependent and central‐place foraging models best‐predicted habitat selection during stopover as geese selected for larger fields where predation risk is typically lower and selection for foraging sites changed as a function of both distance to the roost site (i.e. central‐place) and changes in local density. In contrast to many other studies, the nutritional value of the available food resources did not appear to be a major limiting factor as geese used different food resources proportional to their availability. Our study shows that in an agricultural landscape where nutritional value of food resources is homogeneously high and resource availability changes rapidly; foraging behaviour of geese is largely a tradeoff between fast refuelling and disturbance/predator avoidance.  相似文献   

8.
The reproductive success of colonially breeding species depends in part upon a trade‐off between the benefit of a dilution effect against nestling predation within larger colonies and colony conspicuousness. However, there may be no net survivorship benefit of dilution if smaller colonies are sufficiently inconspicuous. This raises the question about how the size distribution of breeding colonies on a landscape might change as the predation danger for nestlings changes. In southwest British Columbia, Canada, bald eagle Haliaeetus leucocephalus populations have increased exponentially at ~5% per year in recent decades and prey upon nestlings of colonial breeding great blue herons Ardea herodias faninni. Motivated by field data on reproductive success in relation to colony size, modeling is used to ask under which circumstances trading off a dilution benefit against colony conspicuousness can improve population reproductive success. That is, which colonial nesting distribution, dispersed and cryptic versus clumped and conspicuous, best mitigates predation danger on nestlings? When predators are territorial, the modeling predicts a dispersed nesting strategy as attack rate increases, but not as predator numbers increase. When predators are non‐territorial, the modeling predicts a dispersed nesting strategy as predator numbers and/or attack rates increase. When predators are both territorial and non‐territorial, colonial nesting within a predator's territory improves reproductive success when attack rates are low. This suggests nesting in association with territorial predators may offer decreased levels of predation when compared with nesting amongst non‐territorial predators. Thus a change in the colony size distribution of colonially breeding species might be anticipated on a landscape experiencing a change in predation danger.  相似文献   

9.
Coloniality is a breeding system that may produce benefits in terms of breeding success, although these advantages could vary according to factors such as colony size or nest position. We studied breeder's age in relation to nest position (peripheral or central) within the colony. In addition, we studied the relationship between breeding success and nest position, controlling for breeder's age, a highly correlated factor, in a White Stork Ciconia ciconia colony over a 7-year period. Our results show that central nests are mainly occupied by adult birds and had lower failure rates. However, controlling for breeder's age, nest position per se did not explain breeding success. The scarce predation and the lack of human disturbance in the study colony could explain the absence of differences in breeding success between different nest positions within the colony.  相似文献   

10.
ABSTRACT.   Although radiotelemetry is useful for monitoring nest attendance and the foraging ranges and distribution of breeding birds, attachment of transmitters may affect reproductive behavior. In 2003, we captured 25 adult Tufted Puffins ( Fratercula cirrhata ) at two colonies in Chiniak Bay, Kodiak Island, Alaska, and fitted them with subcutaneously anchored radiotransmitters (<1.2% of body mass). We determined the presence of radio-marked birds at each study site using automated, remote radiotelemetry systems, and compared rates of nestling growth, fledging mass, and fledging success for chicks with and without (control group) a radio-marked parent. Although most radio-marked adults continued to attend nests after capture and attachment of transmitters, nestlings with a radio-marked parent had lower mean growth rates (6.9 g/d vs. 14.4 g/d) and fledging success (33% vs. 84%) than control chicks. These results suggest that colony attendance by adult puffins fitted with transmitters declined sharply or completely and this led to high nestling mortality. Given the negative effects of transmitters on Tufted Puffins in our study and in other studies of alcids, we suggest delaying the attachment of transmitters until well after the brooding period. In addition, we recommend pilot studies be undertaken to distinguish the possible effects of capture and handling from those of actually carrying the device.  相似文献   

11.
Colonial breeding occurs in a wide range of taxa, however the advantages promoting its evolution and maintenance remain poorly understood. In many avian species, breeding colonies vary by several orders of magnitude and one approach to investigating the evolution of coloniality has been to examine how potential costs and benefits vary with colony size. Several hypotheses predict that foraging efficiency may improve with colony size, through benefits associated with social foraging and information exchange. However, it is argued that competition for limited food resources will also increase with colony size, potentially reducing foraging success. Here we use a number of measures (brood feeding rates, chick condition and survival, and adult condition) to estimate foraging efficiency in the fairy martin Petrochelidon ariel, across a range of colony sizes in a single season (17 colonies, size range 28–139 pairs). Brood provisioning rates were collected from multiple colonies simultaneously using an electronic monitoring system, controlling for temporal variation in environmental conditions. Provisioning rate was correlated with nestling condition, though we found no clear relationship between provisioning rate and colony size for either male or female parents. However, chicks were generally in worse condition and broods more likely to fail or experience partial loss in larger colonies. Moreover, the average condition of adults declined with colony size. Overall, these findings suggest that foraging efficiency declines with colony size in fairy martins, supporting the increased competition hypothesis. However, other factors, such as an increased ectoparasitise load in large colonies or change in the composition of phenotypes with colony size may have also contributed to these patterns.  相似文献   

12.
KNUD FALK  SØREN MØLLER 《Ibis》1997,139(2):270-281
The breeding ecology of the Fulmar Fulmarus glacialis and the Kittiwake Rissa tridactyla in the high Arctic was studied in relation to the occurrence of the northeast water polynya in northeasternmost Greenland (80̀N). Mean laying dates were 31 May in the Fulmar and 18 June in the Kittiwake; the total nesting season for the Fulmar just matched the time window of the polynya opening period. Fulmar colony attendance fluctuated within a period of 11.6 days because of variation in nonbreeding prospectors but showed no clear diurnal variation. Fulmar incubation shifts, on average, lasted 6.1 days (range 1–13 days), which is significantly longer than elsewhere, and the average chick-guard period of 10.9 days (range 1–17 days) was significantly shorter than in other studies. Egg neglect occurred in 18% of Fulmar nests or 0.7% of nests per day. Overall breeding success (chicks fledged per egg laid) was 0.56 in the Fulmar and 0.67 in the Kittiwake; the latter produced 1.4 young per active nest or 1.2 per completed nest. Mean Kittiwake clutch size was 2.03; larger clutches were laid early. Nest site characteristics (presumably reflecting nest predation risk) and breeding behaviour affected breeding success. in the Fulmar, hatching success was negatively correlated with laying date and the proportion of egg neglect, while overall breeding success was correlated negatively with distance to nearest neighbouring site and positively with the length of the chick-guard period. Kittiwake breeding success was negatively correlated with laying date. Using seabirds as indicators of marine food supply, breeding success in both species suggested moderate to good food supply in the northeast water polynya in 1993, although at least in the Fulmar the high reproductive output appeared partly maintained by behavioural buffering; long incubation shifts, egg neglect and short chick-guard periods were symptoms of foraging constraints.  相似文献   

13.
Foraging animals are influenced by the distribution of food resources and predation risk that both vary in space and time. These constraints likely shape trade-offs involving time, energy, nutrition, and predator avoidance leading to a sequence of locations visited by individuals. According to the marginal-value theorem (MVT), a central-place forager must either increase load size or energy content when foraging farther from their central place. Although such a decision rule has the potential to shape movement and habitat selection patterns, few studies have addressed the mechanisms underlying habitat use at the landscape scale. Our objective was therefore to determine how Ring-billed gulls (Larus delawarensis) select their foraging habitats while nesting in a colony located in a heterogeneous landscape. Based on locations obtained by fine-scale GPS tracking, we used resource selection functions (RSFs) and residence time analyses to identify habitats selected by gulls for foraging during the incubation and brood rearing periods. We then combined this information to gull survey data, feeding rates, stomach contents, and calorimetric analyses to assess potential trade-offs. Throughout the breeding season, gulls selected landfills and transhipment sites that provided higher mean energy intake than agricultural lands or riparian habitats. They used landfills located farther from the colony where no deterrence program had been implemented but avoided those located closer where deterrence measures took place. On the other hand, gulls selected intensively cultured lands located relatively close to the colony during incubation. The number of gulls was then greater in fields covered by bare soil and peaked during soil preparation and seed sowing, which greatly increase food availability. Breeding Ring-billed gulls thus select habitats according to both their foraging profitability and distance from their nest while accounting for predation risk. This supports the predictions of the MVT for central-place foraging over large spatial scales.  相似文献   

14.
Capsule The best estimate of breeding success was a mean of 0.57 fledglings per pair, which when combined with adult survival rates, successfully explained the observed population trend.

Aims To quantify Golden Plover breeding success on a moor managed for shooting Red Grouse Lagopus lagopus.

Methods An intensive study recorded the fate of individual Golden Plover nests and, using radiotelemetry, chicks. The factors associated with mortality were examined, allowing the construction of a model of breeding success. Adult survival was estimated from return rates of colour-ringed birds.

Results Estimated rates of daily nest survival during laying (0.8636) were significantly lower than during incubation (0.9913). The daily survival rate of chicks less than nine days (0.8868) was significantly lower than for older chicks (0.9792). A population model based on these parameters overestimated the rate of nest losses, but accurately described brood survival and fledging success. Although predation rates were low, poor survival of young chicks through starvation or exposure suggest other factors were limiting breeding success at the study site.

Conclusions Predation rates of Golden Plover nests and chicks can be low on moorlands managed for shooting Red Grouse. However, in the absence of predation, other factors may still reduce chick survival and limit breeding success.  相似文献   

15.
Determining if, or when, individuals trade off time spent personally feeding against time spent monitoring others for kleptoparasitism opportunities is essential to an understanding of the evolution of scrounging and usurpation behaviours. We provide a first field test of whether kleptoparasites reduce their personal foraging effort in situations where the frequency and rewards of kleptoparasitism increase. We provided experimental food patches for wild European blackbirds that varied in the distribution of prey and that had a potentially high rate of kleptoparasitism within pairs of blackbirds feeding in them. Although individuals differed in their rate of kleptoparasitism, they did not vary in the size of the reward that they gained from kleptoparasitism. As prey became more clumped, kleptoparasitism rate and its reward per incident increased on average. There was, however, no evidence that individuals that were kleptoparasitising more quickly and/or at a higher frequency had lower personal foraging effort. In contrast, foraging effort increased in both birds compared to when they were foraging alone, independent of dominance, kleptoparasitic opportunity or reward. Our evidence suggests that in some circumstances a kleptoparasite can detect kleptoparasitic opportunities without compromising its own personal foraging rate.  相似文献   

16.
Co‐existence of species has been a central debate in ecology for decades but the mechanisms that allow co‐existence are still heatedly disputed. The main paradigms have shifted among the importance of competition, predation and abiotic conditions as determinants of community structure. Differential habitat selection is considered to reduce competition and hence allow co‐existence. Our goal was to test hypotheses regarding how breeding site use of a population that was patchily distributed on a dynamic floodplain may facilitate coexistence: 1) do species co‐occur randomly or do they occur more or less often than expected by chance? 2) Do species use the same habitat types in equal proportions or do they use them differentially? 3) If they use habitat types differentially, is this differential use related to abiotic and biotic conditions? 4) Does interspecific competition predict breeding site use or do abiotic conditions and predation risk better predict habitat use? We collected presence/absence (i.e. detection/nondetection) data of egg clutches and larvae of four pond‐breeding anuran species during a two year study at a total of 353 ponds. We used site occupancy models and model averaging techniques to predict breeding site selection in relation to habitat types, abiotic and biotic factors. These parameters were corrected for imperfect detection of species. The rates of co‐occurrence were consistently higher than expected by chance. Species differed in the use of the main habitat types. Habitat types that were used by multiple species were used in a species‐specific manner in relation to both abiotic conditions and predation risk. Species preferred ponds where other species and fish were present. Although niche differentiation in breeding site selection is evident, our results do not support the pervasive role of competition avoidance in governing current breeding site selection. We conclude that differential habitat use and differences in response to abiotic conditions and predation risk can override competitive interactions, thereby facilitating local co‐existence and high species diversity.  相似文献   

17.
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.  相似文献   

18.
Optimal avian migration: A dynamic model of fuel stores and site use   总被引:8,自引:0,他引:8  
Birds migrating between widely separated wintering and breeding grounds may choose among a number of potential stopover sites by using different itineraries. Our aim is to predict the optimal migration schedule in terms of (1) rates of fuel deposition, (2) departure fuel loads and (3) stopover site use, when only a handful of such sites are available. We assume that reproductive success depends on the date and fuel load at arrival on the breeding grounds. On migration, the birds face a trade-off between gaining fuel and avoiding predation. To allow the optimal decision at any given moment to depend on the fuel load and the location of the bird, as well as on unpredictability in conditions, we employed stochastic dynamic programming. This technique assumes that the birds know the probability distribution of conditions in all sites, but not the particular realization they will encounter. We examined the consequences of varying aspects of the model, like (1) the shape of the relationship between arrival date and fitness, (2) the presence of stochasticity in fuel deposition rates and wind conditions, and (3) the nature of predation (i.e. whether predation risk depends on the fuel load of the birds or their feeding intensity). Optimal fuel deposition rates are predicted to be constant if there are either only predation risks of maintaining stores or only risks of acquiring fuel stores. If only fuel acquisition is risky, fuel deposition rates can be below maximum, especially if there also is an intermediate best arrival time at the breeding ground. The fuel deposition rate at a site then depends not just on the site's quality but on the qualities of all visited sites. In contrast, rates of fuel deposition are not constant if both the acquisition and the maintenance of fuel stores carry risk. Optimal departure fuel loads are just enough to reach the next site if the environment is deterministic and are simply set by the energetic cost of covering the distance. As with time-minimizing models, more fuel than necessary to reach a site is only deposited under very restricted circumstances. Such overloads are more likely to be deposited if either fuel gains or expenditure are stochastic. The size of overloads is then determined by the variance in fuel gain at the target site and the worst possible conditions during flight. Site use is modified by differences in predation risk between sites and differences in fuel deposition rates. An expression derived to predict site use under time minimization provides a good approximation in state-dependent models. In some cases, the possibility of starvation may influence optimal decisions, even when the probability of starvation under the optimal policy is low. This effect of starvation has also been found in other contexts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We studied factors that affect prey selection by a generalist predator that opportunistically attacks prey species, and the associated inter- and intra-specific responses of prey to this type of predation. Our model system was a guild of ground-foraging birds that are preyed upon by magpies (Pica pica) during the breeding season. We found that magpies attacked up to 12 species during three consecutive breeding seasons. The overall capture success was estimated to be 4.9%. Magpies tended to attack from the air, targeting solitary prey, either on the ground or flying. Inter-specific prey responses to the risk of magpie predation included a reduction in the mean number of species occupying a foraging patch when magpies were present and a decrease in the distance between heterospecific neighbours. Intra-specific responses to magpie predation varied between species that were subject to different attack rates. Preferentially attacked prey enhanced their risk responses (increase in scanning time and scanning rate in the presence of magpies) relative to those species attacked in proportion to their abundance (increase only in scanning rate with magpies). Species attacked infrequently, relative to their abundance, showed no antipredator response. The probability of being attacked, rather than mortality rate, appears to be the factor to which prey species respond.  相似文献   

20.
Numerous hypotheses have been proposed to explain variation in reproductive performance and local recruitment of animals. While most studies have examined the influence of one or a few social and ecological factors on fitness traits, comprehensive analyses jointly testing the relative importance of each of many factors are rare. We investigated how a multitude of environmental and social conditions simultaneously affected reproductive performance and local recruitment of the red-backed shrike Lanius collurio (L.). Specifically, we tested hypotheses relating to timing of breeding, parental quality, nest predation, nest site selection, territory quality, intraspecific density and weather. Using model selection procedures, predictions of each hypothesis were first analysed separately, before a full model was constructed including variables selected in the single-hypothesis tests. From 1988 to 1992, 50% of 332 first clutches produced at least one fledgling, while 38.7% of 111 replacement clutches were successful. Timing of breeding, nest site selection, predation pressure, territory quality and intraspecific density influenced nest success in the single-hypothesis tests. The full model revealed that nest success was negatively associated with laying date, intraspecific density, and year, while nest success increased with nest concealment. Number of fledglings per successful nest was only influenced by nest concealment: better-camouflaged nests produced more fledglings. Probability of local recruitment was related to timing of breeding, parental quality and territory quality in the single-hypothesis tests. The full models confirmed the important role of territory quality for recruitment probability. Our results suggest that reproductive performance, and particularly nest success, of the red-backed shrike is primarily affected by timing of breeding, nest site selection, and intraspecific density. This study highlights the importance of considering many factors at the same time, when trying to evaluate their relative contributions to fitness and life history evolution.Electronic supplementary material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号