首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

2.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

3.
Selection on Silent Sites in the Rodent H3 Histone Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
R. W. DeBry  W. F. Marzluff 《Genetics》1994,138(1):191-202
Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.  相似文献   

4.
While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an ‘accessory’ during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context.  相似文献   

5.
That natural selection affects molecular evolution at synonymous sites in protein-coding sequences is well established and is thought to predominantly reflect selection for translational efficiency/accuracy mediated through codon bias. However, a recently developed maximum likelihood framework, when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the Notch gene in Drosophila melanogaster was evolving under selection in favor of those codons defined as unpreferred in this species. This finding opened the possibility that synonymous sites may be subject to a variety of selective pressures beyond weak selection for increased frequencies of the codons currently defined as "preferred" in D. melanogaster. To further explore patterns of synonymous site evolution in Drosophila in a lineage-specific manner, we expanded the application of the maximum likelihood framework to 8,452 protein coding sequences with well-defined orthology in D. melanogaster, Drosophila sechellia, and Drosophila yakuba. Our analyses reveal intragenomic and interspecific variation in mutational patterns as well as in patterns and intensity of selection on synonymous sites. In D. melanogaster, our results provide little statistical evidence for recent selection on synonymous sites, and Notch remains an outlier. In contrast, in D. sechellia our findings provide evidence in support of selection predominantly in favor of preferred codons. However, there is a small subset of genes in this species that appear to be evolving under selection in favor of unpreferred codons, which indicates that selection on synonymous sites is not limited to the preferential fixation of mutations that enhance the speed or accuracy of translation in this species.  相似文献   

6.
In many organisms, selection acts on synonymous codons to improve translation. However, the precise basis of this selection remains unclear in the majority of species. Selection could be acting to maximize the speed of elongation, to minimize the costs of proofreading, or to maximize the accuracy of translation. Using several data sets, we find evidence that codon use in Escherichia coli is biased to reduce the costs of both missense and nonsense translational errors. Highly conserved sites and genes have higher codon bias than less conserved ones, and codon bias is positively correlated to gene length and production costs, both indicating selection against missense errors. Additionally, codon bias increases along the length of genes, indicating selection against nonsense errors. Doublet mutations or replacement substitutions do not explain our observations. The correlations remain when we control for expression level and for conflicting selection pressures at the start and end of genes. Considering each amino acid by itself confirms our results. We conclude that selection on synonymous codon use in E. coli is largely due to selection for translational accuracy, to reduce the costs of both missense and nonsense errors.  相似文献   

7.
Based on the differences in synonymous codon use between E. coli and S. typhimurium, the synonymous substitution rates can be estimated. In contrast to previous studies on the substitution rates in these two organisms, we use a kinetic model that explicitly takes the selection bias into account. The selection pressure on synonymous codons for a particular amino acid can be calculated from the observed codon bias. This offers a unique opportunity to study systematically the relationship between substitution-rate constants and selection pressure. The results indicate that the codon bias in these organisms is determined by a mutation-selection balance rather than by stabilizing selection. A best fit to the data implies that the mutation rate constant increases about threefold in genes at low expression levels relative to those that are highly expressed.Correspondence to: O.G. Berg  相似文献   

8.
Selection Intensity for Codon Bias   总被引:26,自引:7,他引:19       下载免费PDF全文
D. L. Hartl  E. N. Moriyama    S. A. Sawyer 《Genetics》1994,138(1):227-234
The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd and putP genes of Escherichia coli. For the gnd gene, the average intensity of selection against disfavored synonymous codons was estimated as approximately 7.3 X 10(-9); this value is significantly smaller than the estimated selection intensity against selectively disfavored amino acids in observed polymorphisms (2.0 X 10(-8)), but it is approximately of the same order of magnitude. The selection coefficients for optimal synonymous codons estimated from PRF theory were consistent with independent estimates based on codon usage for threonine and glycine. Across 118 genes in E. coli and Salmonella typhimurium, the distribution of estimated selection coefficients, expressed as multiples of the effective population size, has a mean and standard deviation of 0.5 +/- 0.4. No significant differences were found in the degree of codon bias between conserved positions and replacement positions, suggesting that translational misincorporation is not an important selective constraint among synonymous polymorphic codons in enteric bacteria. However, across the first 100 codons of the genes, conserved amino acids with identical codons have significantly greater codon bias than of either synonymous or nonidentical codons, suggesting that there are unique selective constraints, perhaps including mRNA secondary structures, in this part of the coding region.  相似文献   

9.
Many organisms exhibit biased codon usage in their genome, including the fungal model organism Neurospora crassa. The preferential use of subset of synonymous codons (optimal codons) at the macroevolutionary level is believed to result from a history of selection to promote translational efficiency. At present, few data are available about selection on optimal codons at the microevolutionary scale, that is, at the population level. Herein, we conducted a large-scale assessment of codon mutations at biallelic sites, spanning more than 5,100 genes, in 2 distinct populations of N. crassa: the Caribbean and Louisiana populations. Based on analysis of the frequency spectra of synonymous codon mutations at biallelic sites, we found that derived (nonancestral) optimal codon mutations segregate at a higher frequency than derived nonoptimal codon mutations in each population; this is consistent with natural selection favoring optimal codons. We also report that optimal codon variants were less frequent in longer genes and that the fixation of optimal codons was reduced in rapidly evolving long genes/proteins, trends suggestive of genetic hitchhiking (Hill-Robertson) altering codon usage variation. Notably, nonsynonymous codon mutations segregated at a lower frequency than synonymous nonoptimal codon mutations (which impair translational efficiency) in each N. crassa population, suggesting that changes in protein composition are more detrimental to fitness than mutations altering translation. Overall, the present data demonstrate that selection, and partly genetic interference, shapes codon variation across the genome in N. crassa populations.  相似文献   

10.
Most previous studies of the evolution of codon usage bias (CUB) and intronic GC content (iGC) in Drosophila melanogaster were based on between-species comparisons, reflecting long-term evolutionary events. However, a complete picture of the evolution of CUB and iGC cannot be drawn without knowledge of their more recent evolutionary history. Here, we used a polymorphism dataset collected from Zimbabwe to study patterns of the recent evolution of CUB and iGC. Analyzing coding and intronic data jointly with a model which can simultaneously estimate selection, mutational, and demographic parameters, we have found that: (1) natural selection is probably acting on synonymous codons; (2) a constant population size model seems to be sufficient to explain most of the observed synonymous polymorphism patterns; (3) GC is favored over AT in introns. In agreement with the long-term evolutionary patterns, ongoing selection acting on X-linked synonymous codons is stronger than that acting on autosomal codons. The selective differences between preferred and unpreferred codons tend to be greater than the differences between GC and AT in introns, suggesting that natural selection, not just biased gene conversion, may have influenced the evolution of CUB. Interestingly, evidence for non-equilibrium evolution comes exclusively from the intronic data. However, three different models, an equilibrium model with two classes of selected sites and two non-equilibrium models with changes in either population size or mutational parameters, fit the intronic data equally well. These results show that using inadequate selection (or demographic) models can result in incorrect estimates of demographic (or selection) parameters.  相似文献   

11.
Patterns of non-uniform usage of synonymous codons vary across genes in an organism and between species across all domains of life. This codon usage bias (CUB) is due to a combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of mutation bias and selection on CUB assuming uniform mutational and other non-adaptive forces across the genome. However, non-adaptive nucleotide biases can vary within a genome due to processes such as biased gene conversion (BGC), potentially obfuscating signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive nucleotide biases are lacking for non-model organisms. We combine an unsupervised learning method with a population genetics model of synonymous coding sequence evolution to assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantification of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts. We find that in the absence of a priori information, unsupervised learning can be used to identify genes evolving under different non-adaptive nucleotide biases. We find that the impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among closely-related species. We show that the overall strength and direction of translational selection can be underestimated by failing to account for intragenomic variation in non-adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine learning are also physically clustered across chromosomes. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable non-adaptive nucleotide biases on codon frequencies.  相似文献   

12.
Carlini DB  Stephan W 《Genetics》2003,163(1):239-243
The evolution of codon bias, the unequal usage of synonymous codons, is thought to be due to natural selection for the use of preferred codons that match the most abundant species of isoaccepting tRNA, resulting in increased translational efficiency and accuracy. We examined this hypothesis by introducing 1, 6, and 10 unpreferred codons into the Drosophila alcohol dehydrogenase gene (Adh). We observed a significant decrease in ADH protein production with number of unpreferred codons, confirming the importance of natural selection as a mechanism leading to codon bias. We then used this empirical relationship to estimate the selection coefficient (s) against unpreferred synonymous mutations and found the value (s >or= 10(-5)) to be approximately one order of magnitude greater than previous estimates from population genetics theory. The observed differences in protein production appear to be too large to be consistent with current estimates of the strength of selection on synonymous sites in D. melanogaster.  相似文献   

13.

Background  

It is widely acknowledged that synonymous codons are used unevenly among genes in a genome. In organisms under translational selection, genes encoding highly expressed proteins are enriched with specific codons. This phenomenon, termed codon usage bias, is common to many organisms and has been recognized as influencing cellular fitness. This suggests that the global extent of codon usage bias of an organism might be associated with its phenotypic traits.  相似文献   

14.
Rare codons cluster   总被引:1,自引:0,他引:1  
Clarke TF  Clark PL 《PloS one》2008,3(10):e3412
Most amino acids are encoded by more than one codon. These synonymous codons are not used with equal frequency: in every organism, some codons are used more commonly, while others are more rare. Though the encoded protein sequence is identical, selective pressures favor more common codons for enhanced translation speed and fidelity. However, rare codons persist, presumably due to neutral drift. Here, we determine whether other, unknown factors, beyond neutral drift, affect the selection and/or distribution of rare codons. We have developed a novel algorithm that evaluates the relative rareness of a nucleotide sequence used to produce a given protein sequence. We show that rare codons, rather than being randomly scattered across genes, often occur in large clusters. These clusters occur in numerous eukaryotic and prokaryotic genomes, and are not confined to unusual or rarely expressed genes: many highly expressed genes, including genes for ribosomal proteins, contain rare codon clusters. A rare codon cluster can impede ribosome translation of the rare codon sequence. These results indicate additional selective pressures govern the use of synonymous codons, and specifically that local pauses in translation can be beneficial for protein biogenesis.  相似文献   

15.
Morton BR 《Genetics》2001,159(1):347-358
A previously employed method that uses the composition of noncoding DNA as the basis of a test for selection between synonymous codons in plastid genes is reevaluated. The test requires the assumption that in the absence of selective differences between synonymous codons the composition of silent sites in coding sequences will match the composition of noncoding sites. It is demonstrated here that this assumption is not necessarily true and, more generally, that using compositional properties to draw inferences about selection on silent changes in coding sequences is much more problematic than commonly assumed. This is so because selection on nonsynonymous changes can influence the composition of synonymous sites (i.e., codon usage) in a complex manner, meaning that the composition biases of different silent sites, including neutral noncoding DNA, are not comparable. These findings also draw into question the commonly utilized method of investigating how selection to increase translation accuracy influences codon usage. The work then focuses on implications for studies that assess codon adaptation, which is selection on codon usage to enhance translation rate, in plastid genes. A new test that does not require the use of noncoding DNA is proposed and applied. The results of this test suggest that far fewer plastid genes display codon adaptation than previously thought.  相似文献   

16.
Different synonymous codons are favored by natural selection for translation efficiency and accuracy in different organisms. The rules governing the identities of favored codons in different organisms remain obscure. In fact, it is not known whether such rules exist or whether favored codons are chosen randomly in evolution in a process akin to a series of frozen accidents. Here, we study this question by identifying for the first time the favored codons in 675 bacteria, 52 archea, and 10 fungi. We use a number of tests to show that the identified codons are indeed likely to be favored and find that across all studied organisms the identity of favored codons tracks the GC content of the genomes. Once the effect of the genomic GC content on selectively favored codon choice is taken into account, additional universal amino acid specific rules governing the identity of favored codons become apparent. Our results provide for the first time a clear set of rules governing the evolution of selectively favored codon usage. Based on these results, we describe a putative scenario for how evolutionary shifts in the identity of selectively favored codons can occur without even temporary weakening of natural selection for codon bias.  相似文献   

17.
The patterns of synonymous codon usage in 91 Drosophila melanogaster genes have been examined. Codon usage varies strikingly among genes. This variation is associated with differences in G+C content at silent sites, but (unlike the situation in mammalian genes) these differences are not correlated with variation in intron base composition and so are not easily explicable in terms of mutational biases. Instead, those genes with high G+C content at silent sites, resulting from a strong "preference" for a particular subset of the codons that are mostly C- ending, appear to be the more highly expressed genes. This suggests that G+C content is reduced in sequences where selective constraints are weaker, as indeed seen in a pseudogene. These and other data discussed are consistent with the effects of translational selection among synonymous codons, as seen in unicellular organisms. The existence of selective constraints on silent substitutions, which may vary in strength among genes, has implications for the use of silent molecular clocks.   相似文献   

18.
Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.  相似文献   

19.

Background  

Translational power is the cellular rate of protein synthesis normalized to the biomass invested in translational machinery. Published data suggest a previously unrecognized pattern: translational power is higher among rapidly growing microbes, and lower among slowly growing microbes. One factor known to affect translational power is biased use of synonymous codons. The correlation within an organism between expression level and degree of codon bias among genes of Escherichia coli and other bacteria capable of rapid growth is commonly attributed to selection for high translational power. Conversely, the absence of such a correlation in some slowly growing microbes has been interpreted as the absence of selection for translational power. Because codon bias caused by translational selection varies between rapidly growing and slowly growing microbes, we investigated whether observed differences in translational power among microbes could be explained entirely by differences in the degree of codon bias. Although the data are not available to estimate the effect of codon bias in other species, we developed an empirically-based mathematical model to compare the translation rate of E. coli to the translation rate of a hypothetical strain which differs from E. coli only by lacking codon bias.  相似文献   

20.
Romero H  Zavala A  Musto H 《Gene》2000,242(1-2):307-311
It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号