首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Alterations in the pattern of gene expression were studied during differentiation of the human embryonal carcinoma (EC) cell line NEC14. NEC14 cells can be induced to differentiate by the addition of 10(-2) M N,N'-hexamethylene-bis-acetamide (HMBA). The efficiency of DNA transfection of undifferentiated and differentiated NEC14 cells was compared by measuring the activities of endogenous and exogenously introduced promoters for the beta-actin gene and heat shock protein 70 gene. The results indicated that the efficiency was not significantly different in cells of these two states. Under the conditions used, all the viral enhancer-promoters tested showed very little or no activity in undifferentiated cells, but activities of SV40, BKV, adenovirus and RSV enhancers were greatly increased after differentiation. Activities of these viral enhancers in differentiated cells were completely repressed by cotransfection with the adenovirus E1A gene. An E1A-inducible promoter of the adenovirus E2 gene showed stronger activity in differentiated than in undifferentiated cells, and was not activated efficiently by cotransfection with the E1A gene in either undifferentiated or differentiated cells. These results indicate that factor(s) regulating activities of various enhancer-promoters in NEC14 cells is or are different from E1A-like factor(s) present in mouse EC F9 cells.  相似文献   

3.
Two pluripotential mouse cell lines, the OTT 6050-derived cell line TCE and the embryo-derived stem cell line BLC-1, were injected into blastocysts to analyze their developmental potential. The contribution of TCE cells to the embryo was found to be limited and sporadic. There was no indication of a preferential colonization of extraembryonal membranes or developmentally related tissues in adult chimeras. BLC-1 cells failed to colonize the embryo. This indicates that a normal karyotype, pluripotency, and cell surface markers which are shared by cells of early embryos are not necessarily sufficient markers for their ability to participate in embryogenesis.  相似文献   

4.
Retinoic acid (RA), a derivative of vitamin A, is essential for normal patterning and neurogenesis during development. Until recently, studies have been focused on the physiological roles of RA receptors (RARs), one of the two types of nuclear receptors, whereas the functions of the other nuclear receptors, retinoid X receptors (RXRs), have not been explored. Accumulating evidence now suggests that RXRalpha is a critical receptor component mediating the effects of RA during embryonic development. In this study, we have examined the expression profiles of RXRalpha and RARs during the RA-induced neuronal differentiation in a human embryonal carcinoma cell line, NT2. Distinct expression profiles of RXRalpha, RARalpha, RARbeta, and RARgamma were observed following treatment with RA. In particular, we found that RA treatment resulted in a biphasic up-regulation of RXRalpha expression in NT2 cells. The induced RXRalpha was found to bind specifically to the retinoid X response element based on gel mobility retardation assays. Furthermore, immunocytochemical analysis revealed that RXRalpha expression could be localized to the somatoaxonal regions of the NT2 neurons, including the tyrosine hydroxylase- and vasoactive intestinal peptide-positive neurons. Taken together, our findings provide the first demonstration of the cellular localization and regulation of RXRalpha expression in NT2 cells and suggest that RXRalpha might play a crucial role in the cellular functions of human CNS neurons.  相似文献   

5.
Expression of c-myb in embryonal carcinoma cells and embryonal stem cells   总被引:3,自引:0,他引:3  
Mouse c-myb has been implicated in the regulation of differentiation and proliferation of haematopoietic cells. Analysis of the chromatin structure of the promoter region of c-myb in embryonal carcinoma (EC) cells and embryonal stem (ES) cells reveals a DNAse I-hypersensitive site coincident with a site found in c-myb-expressing haematopoietic cells, but absent in murine fibroblasts (which do not express c-myb). EC and ES cells were found to express c-myb mRNA, albeit at a level lower than found in haematopoietic cells. Differentiation of ES cells into embryoid bodies resulted in an elevated level of c-myb expression.  相似文献   

6.
7.
We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs.  相似文献   

8.
Retinoic acid induced differentiation of TERA-2-derived human embryonal carcinoma cells is accompanied by a dramatic reduction of extended globo-series glycolipids, including galactosyl globoside, sialylgalactosyl globoside, and globo-A antigen (each recognized by specific MoAbs). Associated with these glycolipid changes, the activities of two key enzymes, alpha 1----4 galactosyltransferase (for synthesis of globotriaosyl core structure) and beta 1----3 galactosyltransferase (for synthesis of galactosyl globoside), were found to be reduced 3- to 4-fold. The latter enzyme plays a key role in the synthesis of extended globo-series structures, and its characterization has not been reported previously. Therefore, its catalytic activity was studied in detail, including substrate specificity, detergent and phospholipid effects, pH and cation requirements, and apparent Km. During retinoic acid induced differentiation, a series of Lex glycolipid antigens (recognized by anti-SSEA-1 antibody) and their core structures (lacto-series type 2 chains) increase dramatically. In parallel with these changes in glycolipid expression, the activities of two key enzymes, beta 1----3 N-acetylglucosaminyltransferase (for extension of lacto-series type 2 chain) and alpha 1----3 fucosyltransferase (for synthesis of Lex structure), were found to increase by 4- and 2-fold, respectively. Similarly, an increase in the expression of several gangliosides (e.g., GD3 and GT3) during retinoic acid induced differentiation was mirrored by a 4-fold increase in the activity of alpha 2----3 sialyltransferase (for synthesis of ganglio core structure, GM3). The results suggest a coordinate regulation of key glycosyltransferases involved in core structure assembly and terminal chain modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Curcumin-induced differentiation of mouse embryonal carcinoma PCC4 cells.   总被引:5,自引:0,他引:5  
Curcumin, a natural component of turmeric extracted from the rhizomes of Curcuma longa, is known to exhibit a number of biological properties. In the present study, curcumin, at low concentration, was shown to induce differentiation in embryonal carcinoma cell line PCC4. In response to curcumin, PCC4 cells ceased to proliferate and showed cell cycle arrest at G1 phase after 4 hours of treatment, followed by their differentiation which is characterized by increase of nuclear/cytoplasmic ratio. The expression of hsp 70 was also seen upon 8 h of curcumin treatment, and it remained constant up to 48 h. Differentiated cells also expressed a series of differentiation markers such as lamin A, well-established actin, and keratin cytoskeleton. We used mRNA differential display analysis to identify the genes that are regulated during curcumin-induced differentiation of PCC4 cells. We cloned and sequenced three partial cDNAs that were differentially expressed in normal and differentiated cells. Sequence comparison of one downregulated cDNA (Al) has shown homology to a gene present on mouse chromosome five, while the two upregulated cDNA (C1 and C7) are homologous to several mouse ESTs clones from organs of mesodermal origin. We have identified the full-length coding sequence of the Cl fragment with a putative amino acid sequence. Tissue-specific Northern with RNA from adult mouse organs with the C1 fragment alone showed hybridization with mRNA from several tissues, whereas the same Northern with only the coding sequence showed expression of C1 gene mainly in the adult kidney. Homology search revealed that C1 sequence is part of the 3' UTR and may be common to several genes expressed in many tissues. Thus, curcumin appears to differentiate embryonal carcinoma cell PCC4, and one of the upregulated genes seems to be expressed mainly in the adult kidney.  相似文献   

10.
F9 line embryonal carcinoma cells were induced to differentiate into neural direction by long-term treatment of monolayer cultures with retinoic acid and dibutyryl cyclic AMP. Bi- and multi-polar cells appeared, expressing acetylcholinesterase and neurofilament proteins but not markers of glial differentiation including GFA-protein. Nerve growth factor combined with both retinoic acid and dibutyryl cyclic AMP greatly enhanced the development of neuron-like morphology and induced expression of immunoreactivity to tyrosine hydroxylase as well as to Leu-encephalin-like peptides. Similarly, serotonin-like immunofluorescence but not substance P-like immunoreactivity was demonstrable in such cultures. In addition, synaptic-like vesicles were often found in the processes. Analysis of matrix expression in neuronally differentiated F9 cells revealed marked increase in laminin production, as judged by immunofluorescence and immuno-electron microscopy, but no demonstrable intracellular staining for fibronectin or type IV collagen. The results with neuronal cells contrast with the expression of all the three matrix components in endodermally differentiating F9 cells in the same cultures.  相似文献   

11.
Cytoskeleton of human embryonal carcinoma cells   总被引:1,自引:0,他引:1  
Monoclonal antibodies to cytoskeletal proteins were used to study the intermediate filament proteins of human embryonal carcinoma (EC) cell lines, tumors produced in nude mice from these cell lines, and surgically removed testicular germ cell tumors. It was found that all cells of tumor lines 2102Ep, 1156 and Tera 1 react with antibodies to low molecular weight keratin proteins. By immunoblotting of SDS gels it was found that these lines expressed three keratin polypeptides (40K, 45K and 52K). Clonal line NTera-2 derived from Tera-2 differed from the above listed cell lines in that only 10% of the cells expressed the 40K keratin polypeptide. Upon treatment with retinoic acid 70% of NTera-2 cells became reactive with the antibody to the 40K keratin polypeptide. All cell lines contained a small population of vimentin-positive cells. The number of vimentin-positive cells could be increased by retinoic acid treatment of NTera-2 cells or by seeding the 2102Ep cells at low cell density. Neurofilament-positive cells could be induced in the cell line NTera-2 by retinoic acid treatment. Tumors produced from NTera-2 cells injected into nude mice contained cells reacting with antibodies to keratin, vimentin, neurofilament proteins and desmin. Keratin polypeptides were immunohistochemically demonstrated in embryonal carcinoma, yolk sac carcinoma and trophoblastic components of solid human germ cell tumors. Atypical intratubular cells ('carcinoma in situ') also reacted with antibodies to keratin.  相似文献   

12.
13.
A P19 embryonal carcinoma stem cell line carrying an insertion of the E. coli LacZ gene in an endogenous copy of the Pax-3 gene was identified. Expression of the Pax-3/LacZ fusion gene in neuroectodermal and mesodermal lineages following induction of differentiation by chemical treatments (retinoic acid and dimethylsulfoxide) was characterized using this line and is consistent with the previous localization of Pax-3 expression in the embryo to mitotically active cells of the dorsal neuroectoderm and the adjacent segmented dermomyotome. Pax-3/LacZ marked stem cells were also utilized as target cells in mixing experiments with unmarked P19 cells that had been differentiated by pretreatment with chemical inducers. Induction of beta-galactosidase and neuroectodermal markers in the target cells demonstrates that: (1) some differentiated P19 cell derivatives transiently express endogenous Pax-3- and neuroectoderm-inducing activities, (2) undifferentiated target stem cells respond to these activities even in the presence of leukemia inhibitory factor and (3) the endogenous activities can be distinguished from, and are more potent than, retinoic acid treatment in inducing neuroectoderm. These observations demonstrate that P19 embryonal carcinoma cells provide a useful in vitro system for analysis of the cellular interactions responsible for neuroectoderm induction in mammals.  相似文献   

14.
F9 embryonal carcinoma cells were induced to form a variety of differentiated cell types in monolayer culture. Cells with the morphological, histochemical and immunocytochemical properties of parietal and visceral endoderm, neurones and adipocytes were identified. Cells expressing Thy-1 antigen and large, multinucleated cells expressing cytoplasmic fibronectin were also observed. Various cell types were found together in colonies derived from individual F9 cells, allowing us to conclude that F9 cells are pluripotent in vitro.  相似文献   

15.
The ability of retinoic acid (RA) to induce differentiation in embryonal carcinoma (EC) cells was examined by growing mouse F9 cells in a medium containing 1 μM RA. The altered properties of the cells became apparent after a lag period of approx. 24 h and were fully expressed after 5 days. The RA-induced phenotype was characterized by changes in cell morphology, slowing of the rate of cell multiplication, reduced DNA and protein synthesis, altered pattern of polypeptide synthesis and changes in cell surface components. The slowing of cell multiplication and general reduction in the rate of protein synthesis was paralleled by changes in the relative rates at which different polypeptides were synthesized. Two-dimensional gel electrophoretic analysis of [35S]methioninelabelled cell proteins showed an altered relative synthesis of at least fifty polypeptides. The relative rate of synthesis of two components of the cytoskeleton identified as vimentin and tropomyosin were shown to increase.  相似文献   

16.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   

17.
18.
Human embryonal carcinoma cells sometimes display the developmental potential of early embryonic stem cells. While available data do not clearly identify a counterpart of these tumor cells in normal development, previous comparisons of human embryonal carcinoma and yolk sac carcinomas indicated that these cell types are closely related, and suggested that embryonal carcinoma cells might resemble the progenitors of extraembryonic endoderm. To analyse further cell-differentiation lineage in these tumors, we produced monoclonal antibodies to cytostructurally associated antigens of human embryonal carcinoma cells. Spleen cells from mice immunized with a detergent-insoluble extract of cultured human embryonal carcinoma cells were fused to NS-1 myeloma cells, and hybridoma supernatants were screened by indirect immunofluorescence on the immunizing cell line, then on a panel of cell lines derived from human embryonal carcinomas, yolk sac carcinomas, and a range of neoplastic and normal tissues. Monoclonal antibody GCTM-1 stained the nuclei of all human cells tested and served as a positive control; this antibody immunoprecipitated proteins of 85 and 66 k Da from human embryonal carcinoma cells. GCTM-2 recognized an epitope on a 200-k Da extracellular protein present on the surface of embryonal carcinoma cells, and stained the surface of visceral yolk sac-type carcinoma and colorectal carcinoma cells as well. Enzymatic analysis of carbohydrate residues on the GCTM-2 antigen revealed that it was a keratan sulphate proteoglycan, and suggested that the epitope recognized by the antibody lies on the core protein. In immunoblots, antibody GCTM-3 bound to a 57-k Da cytoskeletal protein expressed in human embryonal carcinoma. This antibody decorated filamentous arrays in cell lines from human embryonal carcinoma, visceral yolk sac carcinoma, parietal yolk sac carcinoma (endodermal sinus tumour), and adenocarcinoma and large cell carcinoma of the lung. Antibody GCTM-4 recognized a determinant present on a 69-k Da polypeptide, associated with a component of the lysosomal compartment, which was expressed in embryonal carcinoma cells, but no other cell type tested. The results with this antibody panel thus allow distinction between human embryonal carcinoma and yolk sac carcinoma, but provide further evidence of a close relationship between these cell types.  相似文献   

19.
Murine embryonal carcinoma cells (EC) can be induced to differentiate by a variety of chemical agents, including retinoid acid (RA) and dimethyl acetamide (DMA). However, it is not known how these agents exert their effects. In this study we demonstrate that murine EC cells can also be induced to differentiate by ouabain at concentrations which inhibit Na+, K+-ATPase activity as measured by inhibition of 86Rb+ uptake. Since the pharmacologic action of ouabain is thought to be specific, we investigated the role of Na+, K+-ATPase inhibition and specific metabolic consequences of this inhibition in the induction of EC differentiation, and explored whether this might be a common mode of action for a variety of structurally diverse inducers. Although the Na+, K+-ATPase maintains ion gradients in cells, our studies failed to demonstrate a consistent role for alterations of ion flux or ion concentration on the differentiation process. Ouabain inhibited cell growth, but a direct correlation between the degree of growth inhibition and the extent of differentiation could not be demonstrated. There was also no evidence that RA or DMA induces differentiation by inhibiting the Na+, K+-ATPase. The mechanism of ouabain induction may be mediated by some alternative consequence of Na+, K+-ATPase inhibition, but it appears to be specific for that inducer and cannot be generalized to that of other inducers of EC differentiation.  相似文献   

20.
The thrombospondins (TSPs) are a family of extracellular glycoproteins that display distinct patterns of temporal and spatial expression during development. In this study, we investigated the expression of two of the TSPs–TPS1 and TSP2– during the course of differentiation of embryonal carcinoma cells in vitro. We report that both TSP1 and TSP2 mRNA and protein synthesis are induced during the differentiation of P19EC cells into neurons, glial cells, and fibroblasts. Immunofluorescence studies indicate that TSP1 displays a fibrillar pattern of staining, characteristic of an extracellular matrix protein, in differentiated P19EC cells. In contrast, TSP2 is cell-associated and is present on differentiated P19EC cells and on primary neurons and glial cells obtained from a 17-day embyronic mouse cerebral cortex. Interestingly, although both TSP1 and TSP2 are more prevalent in areas of differentiated cells, they display distinct patterns of deposition. These observations suggest that TSP1 and TSP2 may function differently during neurogenesis. The response of TSP1 and TSP2 to differentiation of P19EC cells indicates that this cell system will serve as a valuable model for the study of TSP expression and function during neurogenesis. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号