首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A Golgi-rich fraction from bovine adrenal medulla was isolated by centrifugation through discontinuous sucrose density gradients. 2. The specific activity of UDPgalactose-N-acetylglucosamine galactosyl transferase was increased in this fraction. Therefore, this enzyme is a useful marker for Golgi in bovine adrenal medulla. 3. Golgi membranes were reasonably free from mitochondria, lysosomes, endoplasmic reticulum and chromaffin granules as shown by the relatively low activities of marker enzymes. 4. The negative staining techniques of electron microscopy revealed the presence of a system of tubules, vesicles and plate-like center regions which are similar to those structures previously described of the Golgi fraction isolated from the liver. 5. The specific activity of 5'-nucleotidase in the Golgi-rich fraction was 3.5 times greater than that in adrenal homogenates. However, the subcellular distribution patterns of galactosyl transferase and 5'-nucleotidase were similar. The possibility that 5'-nucleotidase might be a conspicious component of the Golgi apparatus is discussed.  相似文献   

2.
Axonal Transport and Metabolism of Glycoproteins in Rat Sciatic Nerve   总被引:5,自引:5,他引:0  
The distribution of 5'-nucleotidase activity, dopaminergic [3H]spiperone binding sites, and [3H]quinuclidinyl benzilate (QNB) binding sites in different subcellular fractions of bovine caudate nucleus has been studied. Each activity was enriched in a microsomal (P3) preparation from that tissue. The microsomal preparation was further fractionated by different techniques. First, the P3 fraction, or a sonicated P3 fraction, was fractionated on a discontinuous sucrose density gradient. Second, the P3 fraction, or a digitonin pretreated P3 fraction, was fractionated on a continuous sucrose density gradient. The results obtained demonstrate that 5'-nucleotidase activity does not cofractionate with radioligand binding activity, although no difference between the distributions of [3H]spiperone binding and [3H]QNB binding were seen. It is concluded that the two radioligand binding activities are located on nonglial membranes.  相似文献   

3.
 本文介绍以手术摘除的人脑胶质瘤为标本,应用蔗糖梯度离心建立的一种较为简便的人脑胶质瘤细胞质膜制备法。经标记酶测定,化学组成分析及电镜检查,证实质膜具有一定的纯度。质膜中5’-核苷酸酶(质膜标记酶)活性为全匀浆的8.2倍,其它亚细胞组份污染较小。质膜收量为24.6%。生化测定还显示质膜5’-核苷酸酶活性随着胶质瘤恶性程度升高而下降。  相似文献   

4.
Unmodified procedures for isolation of fractions rich in Golgi elements from other tissues have not proved applicable to the rat ventral prostate because of the tendency of membranous material to aggregate. We have devised a new procedure whereby: 1) a Golgi rich fraction from rat ventral prostate was released by a gentle two-step homogenization and isolated by centrifugation through discontinuous sucrose density gradients; 2) the specific activity of UDP-galactose: glycoprotein galactosyltransferase increased 69-fold in this fraction; 3) the isolated Golgi fraction was reasonably free from mitochondria, lysosomes, endoplasmic reticulum and plasma membranes as shown by the relatively low activities of marker enzymes; 4) the specific activities of acid phosphatase and 5'-nucleotidase in the Golgi rich fraction was 4 times greater than that in prostate homogenate. Both enzymes are secretory products and their presence in Golgi elements is probably associated with their packaging in secretory granules.  相似文献   

5.
A method for the preparation of HeLa cell plasma membrane ghosts is described. The purity of the plasma membrane fraction was examined by phase contrast and electron microscopy, by chemical analysis, and by assay of marker enzymes. Data on the composition of the plasma membrane fraction are given. It was observed that the distribution pattern of 5'-nucleotidase activity among the subcellular fractions differed from that of ouabain-sensitive ATPase. In addition, the specific activity of 5'-nucleotidase did not follow the distribution of the membrane ghosts. Thus, this enzyme would seem unsuitable as a plasma membrane marker. A complete balance sheet for marker enzyme activities during the fractionation is necessary for the calculation of increase in specific activity because the activities of both 5'-nucleotidase and ouabain-sensitive ATPase might change during the fractionation procedures.  相似文献   

6.
The crude membrane preparation of Methylomonas methanica was fractionated by sucrose density gradient centrifugation and in an aqueous dextran -- polyethylene glycol two-phase system. Fractions of a higher purity were prepared by sucrose density gradient centrifugation. Two subcellular fractions were isolated and characterized. One of them enriched in lipopolysaccharides was represented by the cell wall debris; the other possessing greater specific activities of the enzymes contained mainly intracytoplasmic membranes. The effect of various factors on the separation of membranes and on the specific enzyme activities was investigated.  相似文献   

7.
Plasma membranes were isolated from the cultured Sertoli cells of 20-day-old rat testes by differential centrifugation and sucrose density fractionation. The distribution and purity of subcellular components was determined by marker enzyme analysis of gradient fractions. The plasma membrane fraction showed an enrichment in two plasma membrane marker enzymes, 5'-nucleotidase and ouabain-sensitive Na+/K+-ATPase-specific activities, of 9- and 23-fold, respectively. Forty-two percent and 52% of the total cellular 5'-nucleotidase and ouabain-sensitive Na+/K+-ATPase activities, respectively, were found in the membrane fraction. The protein yield of plasma membrane was approximately 6% of the total cellular protein. Two-dimensional polyacrylamide gel electrophoresis was used to compare [35S] methionine- and [3H] glucosamine-labeled membrane proteins. The incorporation of [35S] methionine and [3H] glucosamine was increased in several proteins when the cultured Sertoli cells were treated with follicle-stimulating hormone, insulin, retinol, and testosterone. Isolated Sertoli cell membranes contained a membrane-associated form of plasminogen activator. Analysis of this plasminogen activator demonstrated that the membrane-associated enzyme existed primarily as a single 38,000-40,000-Mr form.  相似文献   

8.
The subcellular distribution of adenyl cyclase was investigated in small intestinal epithelial cells. Enterocytes were isolated, disrupted and the resulting membranes fractionated by differential and sucrose gradient centrifugation. Separation of luminal (brush border) and contra-luminal (basolateral) plasma membrane was achieved on a discontinuous sucrose gradient. The activity of adenyl cyclase was followed during fractionation in relation to other enzymes, notably those considered as markers for luminal and contraluminal plasma membrane. The luminal membrane was identified by the membrane-bound enzymes sucrase and alkaline phosphatase and the basolateral region by (Na+ + K+)-ATPase. Enrichment of the former two enzymes in purified luminal plasma membrane was 8-fold over cells and that of (Na+ + K+)-ATPase in purified bisolateral plasma membranes was 13-fold. F--activated adenyl cyclase co-purified with (Na+ + K+)-ATPase, suggesting a common localization on the plasma membrane. The distribution of K+-stimulated phosphatase and 5'-nucleotidase also followed (Na+ + K+)-ATPase during fractionation.  相似文献   

9.
Adsorption of local anesthetics on phospholipid membranes   总被引:5,自引:0,他引:5  
The subcellular distribution in rat liver of non-latent and latent NADH pyrophosphatase was determined by analytical sucrose density gradient centrifugation. Non-latent NADH pyrophosphatase activity was distributed similarly to the plasma membrane marker, 5'-nucleotidase. However, latent NADH pyrophosphatase was found at the low density region of the gradient, similar to the distribution of galactosyl transferase, a Golgi marker. A population of membranes, corresponding to those from the low density region, was prepared by discontinuous sucrose gradient centrifugation. Radiolabelled insulin was used, to monitor the involvement of these membranes in ligand internalization. The membrane perturbant, digitonin, was used to effect a partial separation between membranes bearing NADH pyrophosphatase and those bearing galactosyl transferase. The mechanism by which this separation is effected has been investigated and it was shown that, although digitonin caused a loss of enzyme latency, the density shift was not due to this effect. The partially purified ligandosome-rich fraction was characterized by enzymic and ultrastructural analysis. A novel EM cytochemical stain for NADH pyrophosphatase identified a vesicular fraction distinct from Golgi lamellae.  相似文献   

10.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

11.
The iodothyronine-deiodinating enzymes (iodothyronine-5- and 5'-deiodinase) of rat liver were found to be located in the parenchymal cells. Differential centrifugation of rat liver homogenate revealed that the deiodinases resided mainly in the microsomal fraction. The subcellular distribution pattern of these enzymes correlated best with glucose-6-phosphatase, a marker enzyme of the endoplasmic reticulum. Plasma membranes, prepared by discontinuous sucrose gradient centrifugation, were found to contain very little deiodinating activity. Analysis of fractions obtained during the course of plasma membrane isolation showed that the deiodinases correlated positively with glucose-6-phosphatase (r larger than or equal to 0.98) and negatively with the plasma membrane marker 5'-nucleotidase (r ranging between -0.88 and -0.97). It is concluded that the iodothyronine-deiodinating enzymes of rat liver are associated with the endoplasmic reticulum.  相似文献   

12.
Plasma membranes were isolated from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5'-nucleotidase and (Na+ + K+)-ATPase were used. The yield of plasma membrane was 0.6-0.9 mg protein per g wet weight of liver. The recovery of 5'-nucleotidase and (Na+ +K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the activity of glucose-6-phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5'-nucleotidase, alkaline phosphatase, (Na+ +K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na2+ +K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphate was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

13.
The subcellular localization of the membrane-associated CTP:phosphocholine cytidylyltransferase was determined in Chinese hamster ovary cells in which the phospholipid composition had been altered by growth in the presence of N-methylethanolamine or treatment with phospholipase C. Cell homogenates were fractionated on Percoll density gradients, and marker enzyme activities were used to determine the location of the cellular membrane fractions. The peak of cytidylyltransferase activity occurred in the gradient at a density intermediate to that of the peaks of endoplasmic reticulum and plasma membrane markers. The profile of cytidylyltransferase activity most closely resembled that of the Golgi membrane marker; however, upon sucrose gradient centrifugation, the profile of the Golgi apparatus was very different from that of cytidylyltransferase. Differential centrifugation suggested a nuclear membrane association of the enzyme. Cytidylyltransferase was associated with a membrane fraction that sedimented when subjected to very low speed centrifugation (65 x g, 5 min). From Percoll gradient fractions, nuclei were identified by microscopy, and they migrated with cytidylyltransferase activity. The data are consistent with a localization of cytidylyltransferase in the nuclear membrane.  相似文献   

14.
Cyclic AMP-stimulated phosphorylation of membrane proteins in central-nervous-system myelin was investigated, with rabbit brain myelin. Subfractionation of a myelin membrane preparation by sucrose-density-gradient centrifugation produced a rapidly sedimenting population of membrane vesicles containing 5'-nucleotidase and acetylcholinesterase, a light membrane fraction containing myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphodiesterase, and an intermediate membrane fraction containing the highest specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase and a small proportion of myelin basic protein. Cyclic AMP stimulation of protein phosphorylation was confined to a protein of Mr 49 700, which co-electrophoresed with the upper component of the Wolfgram protein doublet. Cyclic AMP did not affect the phosphorylation of myelin basic protein. Cyclic AMP-stimulated phosphorylation of this protein followed 2',3'-cyclic nucleotide 3'-phosphodiesterase activity on subcellular fractionation and was correspondingly high in the intermediate or 'myelin-like' fraction on sucrose-density-gradient centrifugation.  相似文献   

15.
A rapid small-scale procedure was set up to obtain highly purified preparations of lysosomes and plasma membranes from the homogenate of cerebellar granule cells differentiated in culture. It consisted in a centrifugation of the postnuclear fraction P2, on a Percoll gradient with formation of an upper and lower band. The upper band, upon centrifugation on 1 M sucrose, produced a light band lying on the top, that constituted the plasma membrane preparation. The upper band constituted the lysosome preparation. The plasma membrane preparation exhibited a 6-fold relative specific activity increase of Na+, K(+)-ATPase and 5'-nucleotidase, with negligible contamination by other subcellular markers; the lysosomal preparation exhibited a 30-fold relative specific activity increase of beta-galactosidase and beta-hexosaminidase, with virtually no contamination by other subcellular markers. Both the lysosome and plasma membrane preparations carried sialidase activity on MUB-NeuNAc and ganglioside GD1a. The sialidase activity on GD1a required the presence of Triton X-100 in both subcellular preparations; the sialidase activity on MUB-NeuNAc was markedly activated by albumin only in the lysosomes. The lysosomal sialidase had a unique optimal pH value, 3.9. The plasma membrane sialidase featured two values of optimal pH, one at 3.9, for both substrates and second at 5.4 and 6.0 for MUB-NeuNAc and GD1a, respectively. It is concluded that cerebellar granule cells differentiated in vitro possess one lysosomal sialidase and two plasma membrane sialidases, all of them active on ganglioside.  相似文献   

16.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

17.
Membrane vesicles can be prepared from murine lymphoid cells by nitrogen cavitation and fractionated by sedimentation through nonlinear sucrose density gradients. Two subpopulations of membrane vesicles, PMI and PMII, can be distinguished on the basis of sedimentation rate. The subcellular distribution of adenylate and guanylate cyclases in these membrane subpopulations have been compared with the distribution of a number of marker enzymes. Approximately 20-30% of the total adenylate and guanylate cyclase activity is located at the top of the sucrose gradient (soluble enzyme), the remainder of the activity being distributed in the PMI and PMII fractions (membrane-bound enzyme). More than 90% of the 5'-nucleotidase and NADH oxidase activities detected in lymphoid cell homogenates are located in PMI and PMII fractions, whereas succinate cytochrome c reductase activity is detected only in the PMII fractions. In addition, beta-galactosidase activity is distributed in the soluble and PMII fractions of the sucrose density gradients. On the basis of the fractionation patterns of these various enzyme activities, it appears that PMI fractions contain vesicles of plasma membrane and endoplasmic reticulum, whereas PMII fractions contain mitochondria, lysomes, and plasma membrane vesicles. Approximately 30-40% of the adenylate and guanylate cyclase activities in PMII can be converted to a PMI-like form following dialysis and resedimentation through a second nonlinear sucrose gradient. Adenylate and guanulate cyclases can be distinguished on the basis of sensitivity to nonionic detergents.  相似文献   

18.
Detailed investigations by quantitative centrifugal fractionation were conducted to determine the subcellular distribution of protein-bound sialic acid in rat liver. Homogenates obtained from perfused livers were fractionated by differential centrifugation into nuclear fraction, large granules, microsomes, and final supernate fraction, or were used to isolate membrane preparations enriched in either plasma membranes or Golgi complex elements. Large granule fractions, microsome fractions, and plasma membrane preparations were subfractionated by density equilibration in linear gradients of sucrose. In some experiments, microsomes or plasma membrane preparations were treated with digitonin before isopycnic centrifugation to better distinguish subcellular elements related to the plasma membrane or the Golgi complex from the other cell components; in other experiments, large granule fractions were obtained from Triton WR-1339-loaded livers, which effectively resolve lysosomes from mitochondria and peroxisomes in density gradient analysis. Protein-bound sialic acid and marker enzymes were assayed in the various subcellular fractions. The distributions obtained show that sialoglycoprotein is restricted to some particular domains of the cell, which include the plasma membrane, phagolysosomes, and possibly the Golgi complex. Although sialoglycoprotein is largely recovered in the microsome fraction, it has not been detected in the endoplasmic reticulum-derived elements of this subcellular fraction. In addition, it has not been detected either in mitochondria or in peroxisomes. Because the sialyltransferase activities are associated with the Golgi complex, the cytoplasm appears compartmentalized into components which biogenetically involve the Golgi apparatus and components which do not.  相似文献   

19.
A highly enriched sarcolemma preparation was isolated by differential centrifugation of a canine ventricular homogenate followed by centrifugation of a membrane fraction layered over 22% (w/v) sucrose. Ouabain binding, ouabain-sensitive potassium phosphatase activity and 5'-nucleotidase activity were enriched 19--27 fold over the homogenate whereas Ca2+-ATPase and succinate dehydrogenase activities were 0.75 and 0.36, respectively, of that for the homogenate. The isolation procedure was relatively rapid and yielded about 2.0 mg protein/100 g of ventricular muscle. The highest salt concentration used in the procedure was 0.6 M KCl and no detergents were employed. Initial characterization studies suggested that the sarcolemma-enriched fraction consists predominantly if not totally of freely permeable membrane vesicles and that the sarcolemma does not manifest a Ca2+-ATPase activity, at least within the limits of the assay procedures employed. This preparation was concluded to be about 1.5- to 4-fold more highly enriched with sarcolemmal markers than preparations obtained by previously published procedures. Accordingly, the preparation provides an improved basis for the probe of calcium movements that occur across the sarcolemma in association with the excitation-contraction-relaxation sequence of the mammalian myocardial cell.  相似文献   

20.
A fraction enriched in plasma membranes from porcine polymorphonuclear leucocytes, isolated by sucrose density centrifugation was shown to possess considerable AMP hydrolysing activity (150 nmol/min per mg protein). However all of this activity could be inhibited using excess p-nitrophenyl phosphate in the incubation medium. Furthermore the hydrolysis of AMP by the membrane was unaffected by the 5'-nucleotidase inhibitor alpha, beta-methyleneadenosine diphosphate and by the lectin concanavalin A, another potent inhibitor of 5'-nucleotidase. An antibody against mouse liver 5'-nucleotidase also did not inhibit the activity. These results suggest that the hydrolysis of AMP by porcine polymorph membranes is not accomplished by a specific 5'-nucleotidase and the necessity for distinguishing between true 5'-nucleotidase and non-specific phosphatase activity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号