首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent labeled analogs of phosphatidylcholine (NBD-PC) and phosphatidylserine (NBD-PS) were used to study transport of phospholipids from the outer to the inner leaflet of the plasma membrane of human platelets. Platelets were stimulated with thrombin or Ca2(+)-ionophore at various extracellular [Ca2+]. No significant transport of NBD-PC could be observed either in resting or stimulated platelets. NBD-PS transport in platelets stimulated with thrombin (with or without extracellular Ca2+), or ionophore in the presence of EGTA, was enhanced 4-fold (t1/2 approximately 2 min) compared to unstimulated controls (t1/2 approximately 8 min). Stimulation with ionophore at extracellular [Ca2+] exceeding 8 microM caused a gradual decrease in inward transport of NBD-PS. At 100 microM Ca2+, NBD-PS transport becomes as slow as that of NBD-PC. We conclude that platelet activation by agonists that induce secretion without appreciable shedding is accompanied by an increase in translocase activity that maintains asymmetry during fusion which occurs during exocytosis.  相似文献   

2.
Previous work has shown that bovine prothrombin fragment 1 binds to substrate-supported planar membranes composed of phosphatidylcholine (PC) and phosphatidylserine (PS) in a Ca(2+)-specific manner. The apparent equilibrium dissociation constant is 1-15 microM, and the average membrane residency time is approximately 0.25 s-1. In the present work, fluorescence pattern photobleaching recovery with evanescent interference patterns (TIR-FPPR) has been used to measure the translational diffusion coefficients of the weakly bound fragment 1. The results show that the translational diffusion coefficients on fluid-like PS/PC planar membranes are on the order of 10(-9) cm2/s and are reduced when the fragment 1 surface density is increased. Control measurements were carried out for fragment 1 on solid-like PS/PC planar membranes. The dissociation kinetics were similar to those on fluid-like membranes, but protein translational mobility was not detected. TIR-FPPR was also used to measure the diffusion coefficient of the fluorescent lipid NBD-PC in fluid-like PS/PC planar membranes. In these measurements, the diffusion coefficient was approximately 10(-8) cm2/s, which is consistent with that measured by conventional fluorescence pattern photobleaching recovery. This work represents the first measurement of a translational diffusion coefficient for a protein weakly bound to a membrane surface.  相似文献   

3.
The physical properties of lipid bilayers with a similar composition to the outer and inner leaflets of the human erythrocyte membrane have been examined in protein-free model systems. The outer leaflet (OL) was represented by a phospholipid mixture containing phosphatidylcholine and sphingomyelin extracted from human erythrocytes, while a mixture of phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine represented the inner leaflet (IL). The ratio of cholesterol to phospholipid was varied in both mixtures. The lateral diffusion coefficient of fluorescent phospholipids diluted in such lipid mixtures was determined by the modulated fringe pattern photobleaching technique. Contrast curves with a single exponential decay, indicative of homogeneous samples, were obtained only for temperatures above 15 °C and for a cholesterol to phospholipid molar ratio below 0.8. The rate of lateral diffusion was approximately five times faster in IL than in OL multilayers, in agreement with former results obtained in human erythrocytes (Morrot et al. 1986). Varying the cholesterol to phospholipid ratio from 0 to 0.8 (mol/mol) enabled us to decrease the diffusion constant by only a factor of approximately 2 for both IL and OL mixtures. The order parameter of a spin-labeled phospholipid was determined in the different systems and found to be systematically smaller in IL mixtures than in OL mixtures. The present study indicates that the difference in lipid diffusivity of the two erythrocyte leaflets may be accounted for solely by a difference in phospholipid composition, and may be independent of cholesterol and protein asymmetry.Abbreviations OL outer leaflet - IL inner leaflet - RBC red blood cell - NBD-PC 1-acyl-2-[12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino] dodecanoyl phosphatidylcholine - NBD-PE 1-acyl-2-[12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] dodecanoyl phosphatidylethanolamine - NBD-PS 1-acyl-2-[12-(7-nitrobenz-2-oxy-1,3-diazol-4-yl)amino] dodecanoyl phosphatidylserine - DMPC 1,2 dimyristoyl-sn-glycero-3-phosphocholine - DMPS 1,2 dimyristoyl-snglycero-3-phosphoserine - PC phosphatidyleholine - C/P cholesterol over phospholipid molar ratio - D lateral diffusion coefficient - S order parameter - ESR electron spin resonance - NMR nuclear magnetic resonance - EDTA ethylene diamine tetraacetic acid - TRIS tris-(hydroxymethyl)amino ethane Offprint requests to: P. F Devaux  相似文献   

4.
The interaction of macrophages with red blood cells (RBC) displaying phosphatidylserine (PS) in their surface membranes was investigated after the transfer of an exogenously supplied fluorescent lipid analog to the RBC. Nonfluorescent (quenched) lipid vesicles were formed by ultrasonication from 1-acyl-2-[(N-4-nitro-benzo-2-oxa-1,3 diazole)aminocaproyl]phosphatidyl-serine (NBD-PS) or 1-acyl-2[(N-4-nitrobenzo-2-oxa-1,3 diazole)aminocaproyl]phosphatidylcholine (NBD-PC). The interaction of these vesicles with RBC was monitored as a function of vesicle concentration by assessment of the degree to which cell-associated lipid fluorescence was dequenched after vesicle treatment. When vesicle concentrations of less than 100 ng/ml were used, lipid fluorescence was largely dequenched, indicating that lipid transfer was the predominant mechanism of both NBD-PS and NBD-PC uptake; however, when vesicle concentrations were increased to greater than 100 ng/ml, a concentration-dependent increase in the fraction of quenched cell-associated lipid was observed, indicating that another mechanism, possibly vesicle-cell adhesion, also occurred. Using NBD-PS at concentrations at which dilution of all the phospholipid analog in the recipient cell membrane could be unequivocally confirmed, we observed that the uptake of NBD-PS-treated RBC by macrophages was increased 5-fold over that of controls, whereas the uptake of RBC containing an equivalent amount of exogenously supplied NBD-PC was unaltered. Furthermore, preincubation of macrophage monolayers with vesicles containing PS resulted in a approximately 60% inhibition in the uptake of NBD-PS-treated RBC, whereas no inhibition in the uptake of control, opsonized, or NBD-PC-treated RBC was observed. These findings suggest that PS in the outer leaflet of RBC might serve as a signal for triggering their recognition by macrophages.  相似文献   

5.
6.
Micrometer-scale domains in fibroblast plasma membranes   总被引:17,自引:7,他引:10       下载免费PDF全文
We have used the technique of fluorescence photobleaching recovery to measure the lateral diffusion coefficients and the mobile fractions of a fluorescent lipid probe, 1-acyl-2-(12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)aminododecanoyl]) phosphatidylcholine (NBD-PC), and of labeled membrane proteins of human fibroblasts. Values for mobile fractions decrease monotonically with increasing size of the laser spot used for the measurements, over a range of 0.35-5.0 microns. Values for NBD-PC diffusion coefficients increase in part of this range to reach a plateau at larger laser spots. This variation is not an artifact of the measuring system, since the effects are not seen if diffusion of the probe is measured in liposomes. We also find that the distribution of diffusion coefficients measured with small laser spots is heterogeneous indicating that these small spots can sample different regions of the membrane. These regions appear to differ in protein concentration. Our data strongly indicate that fibroblast surface membranes consist of protein-rich domains approximately 1 micron in diameter, embedded in a relatively protein-poor lipid continuum. These features appear in photographs of labeled cell surfaces illuminated by the expanded laser beam.  相似文献   

7.
The transport of exogenously supplied fluorescent analogues of aminophospholipids from the outer to inner leaflet in red blood cells (RBC) is dependent upon the oxidative status of membrane sulfhydryls. Oxidation of a sulfhydryl on a 32-kDa membrane protein by pyridyldithioethylamine (PDA) has been previously shown [Connor & Schroit (1988) Biochemistry 27, 848-851] to inhibit the transport of NBD-labeled phosphatidylserine (NBD-PS). In the present study, other sulfhydryl oxidants were examined to determine whether additional sites are involved in the transport process. Our results show that diamide inhibits the transport of NBD-PS via a mechanism that is independent of the 32-kDa site. This is shown by the inability of diamide to block labeling of the 32-kDa sulfhydryl with 125I-labeled PDA and to protect against PDA-mediated inhibition of NBD-PS transport. diamide-mediated inhibition, but not PDA-mediated inhibition, could be reversed by reduction with cysteamine or endogenous glutathione. Similarly, treatment of RBC with 5,5'-dithiobis(2-nitrobenzoic acid), which depletes endogenous glutathione and induces oxidation of endofacial proteins [Reglinski et al. (1988) J. Biol. Chem. 263, 12360-12366], inhibited NBD-PS transport in a manner analogous to diamide. Once established, the asymmetric distribution of NBD-PS could not be altered by oxidation of either site. These data indicate that a second site critical to the transport of aminophospholipids resides on the endofacial surface and suggest that the transport of aminophospholipids across the bilayer membrane of RBC depends on a coordinated and complementary process between a cytoskeletal component and the 32-kDa membrane polypeptide; both must be operative for transport to proceed.  相似文献   

8.
The (Ca2+ + Mg2+)-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tejcka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 microM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

9.
Activation of some lipoxygenases (LOX) is found to be related to the selective membrane binding upon cell stimulation. In this study, a systematic analysis of the effect of the lipid composition on the membrane binding efficiency, Ca(2+) affinity, and enzymatic activity of 11R-LOX was performed. The analysis of the membrane targeting by fluorometric and surface plasmon resonance measurements in the absence of Ca(2+) showed an exclusive binding of 11R-LOX to the anionic phospholipids (phosphatidylinositol < phosphatidylglycerol ≈ phosphatidylserine) containing model membranes. The presence of Ca(2+) enhanced the rate of interaction and influenced its mode. The modulation of the activity of 11R-LOX indicated that (i) Ca(2+) binding is a prerequisite for productive membrane association, (ii) the reaction of 11R-LOX with arachidonic acid coincided with and was driven by its Ca(2+)-mediated membrane association, and (iii) phosphatidylethanolamine and anionic phospholipids had a synergistic effect on the Ca(2+) affinity, in line with a target-activated messenger affinity mechanism [Corbin, J. A., et al. (2007) Biochemistry 46, 4322-4336]. According to the mechanism proposed in this report, 11R-LOX can bind to the membranes in two different modes and the efficiency of productive membrane binding is determined by a concerted association of Ca(2+) and lipid headgroups.  相似文献   

10.
The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate > phosphatidylserine > phosphatidylcholine approximately = phosphatidylethanolamine approximately = 0. Acidic phospholipids increased V(max-Ca2+) and lowered the value of K(0.5-Ca2+) below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K(0.5-Ca2+) value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1-116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Delta74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.  相似文献   

11.
The method of spin-spin interactions between 15N and 14N spin-labels was used to investigate lipid-protein collision rates in reconstituted vesicles containing rhodopsin from bovine disk membranes and an equimolar mixture of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. In each sample, a fraction of one of the three phospholipids was labeled with 14N spin-label while a 15N spin-labeled fatty acid was covalently linked to rhodopsin. The extent of spin-spin interaction between 15N and 14N labels was either calculated by complete spectral simulation or evaluated from the line broadening as deducted from the intensity decrease of the low-field 15N line. It was found that all three spin-labeled phospholipids utilized for these experiments can interact magnetically with the spin-labeled rhodopsin. Above 35 degrees C little difference between the three species can be detected. Calculation of the diffusion constant of the phospholipids at the boundary of rhodopsin proves that the lifetime of the phospholipids at the protein boundary is short and that no long-lived annular lipids are segregated. At temperatures below approximately 30 degrees C the spectra of the samples containing spin-labeled phosphatidylserine depend upon the presence or absence of calcium. The extent of 15N line broadening was found weaker in the presence of Ca2+ than in the presence of ethylenediaminetetraacetate. Thus Ca2+ tends to exclude phosphatidylserine from the lipid environment of rhodopsin. This observation can be attributed to the formation of specific lipid domains within the membrane, induced by Ca2+.  相似文献   

12.
Multidrug resistance-associated protein (MRP1) may function as a floppase in human red blood cells to translocate phosphatidylserine and/or phosphatidylcholine from inner membrane leaflet to outer leaflet. Here we report that the purified and reconstituted MRP1 protein into asolectin proteoliposomes is mainly in an inside-out configuration and possesses the ability to flop a fluorescent labeled phosphatidylcholine (NBD-PC) from outer leaflet (protoplasmic) to inner leaflet (extracytoplasmic). The reconstituted MRP1 protein retains endogenous ATPase activity. ATP hydrolysis is required for the flopping since removal of ATP and/or Mg2+ inhibits the translocation of NBD-PC. Further evidence to support this conclusion is that the translocation of NBD-PC is inhibited by vanadate, which traps ATP hydrolysis product ADP in the nucleotide binding domains. In addition, the translocation of NBD-PC by proteoliposomes containing MRP1 protein is in a glutathione-dependent manner, similar to the process of translocating anticancer drugs such as daunorubicin. verapamil, vincristine, vinblastine, doxorubicin and oxidized glutathione partially inhibited the translocation of NBD-PC, whereas MK 571, an inhibitor of MRP1 protein, inhibited the translocation almost completely. Taken together, the purified and reconstituted MRP1 protein possesses the ability to flop NBD-PC from outer to inner leaflet of the proteoliposomes.  相似文献   

13.
The content of phosphatidylserine (PS) was found to be increased three times in the plasma membrane outer leaflet of ras-transformed fibroblasts compared to their nontransformed counterparts. In an attempt to determine the mechanisms responsible for the enhanced external appearance of PS, we investigated the activities of aminophospholipid translocase and the nonspecific lipid scramblase. Both transport systems could separately or in combination contribute to PS accumulation in the extracellular leaflet. Aminophospholipid transfer was assessed by measuring the rate of NBD-PS internalization, and scramblase activity was estimated from the internalization of NBD-PC. The results showed that the aminophospholipid transport was inhibited and the nonspecific transport was stimulated in ras-transformed cells. To assess which of these two transport systems was related to elevation of PS external appearance, each of them was submitted to reversible alterations and the content of PS was measured simultaneously. Aminophospholipid translocase activity was inhibited by pyridyldithioethylamine treatment and reversed by reduction with dithiothreitol. Scramblase activity was modulated by a calcium repletion-depletion procedure. Calcium depletion was performed by cell incubation with BAPTA-AM and EGTA as Ca2+ intracellular and extracellular chelators. Restoration of the intracellular Ca2+ was achieved by cell incubation with Ca2+ and Ca2+-ionophore A23187. The results showed that the changes in PS outer appearance did not correlate with the uptake of NBD-PS but were closely related to NBD-PC internalization, suggesting that the nonspecific bidirectional lipid transfer was the major transport system translocating PS to the outer leaflet in ras-transformed cells.  相似文献   

14.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3--5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 micrometer diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

15.
Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.  相似文献   

16.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidylethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94--100% at 23 degrees C and 84--88% at 40 degrees C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74--85% at 23 degrees C and 61--79% at 40 degrees C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 . 10(-7) M for phosphatidylserine-phosphatidylethanolamine and 1.2 . 10(-6) M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17 degrees C) and phosphatidylcholine (-15 degrees C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

17.
Eukaryotic plasma membranes generally display asymmetric lipid distributions with the aminophospholipids concentrated in the cytosolic leaflet. This arrangement is maintained by aminophospholipid translocases (APLTs) that use ATP hydrolysis to flip phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the external to the cytosolic leaflet. The identity of APLTs has not been established, but prime candidates are members of the P4 subfamily of P-type ATPases. Removal of P4 ATPases Dnf1p and Dnf2p from budding yeast abolishes inward translocation of 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl] (NBD)-labeled PS, PE, and phosphatidylcholine (PC) across the plasma membrane and causes cell surface exposure of endogenous PE. Here, we show that yeast post-Golgi secretory vesicles (SVs) contain a translocase activity that flips NBD-PS, NBD-PE, and NBD-PC to the cytosolic leaflet. This activity is independent of Dnf1p and Dnf2p but requires two other P4 ATPases, Drs2p and Dnf3p, that reside primarily in the trans-Golgi network. Moreover, SVs have an asymmetric PE arrangement that is lost upon removal of Drs2p and Dnf3p. Our results indicate that aminophospholipid asymmetry is created when membrane flows through the Golgi and that P4-ATPases are essential for this process.  相似文献   

18.
The recognition of phosphatidylserine (PS) by macrophages was investigated using inside-out (IO) red blood cell (RBC) ghosts and RBC displaying PS in their surface membranes. This was accomplished by employing unmodified pathologic sickle RBC which contain endogenous PS in their outer membrane leaflet, and RBC modified by the transfer of an exogenous fluorescent PS analog. Proper insertion of exogenous PS was confirmed by monitoring the degree to which cell-associated lipid fluorescence was dequenched following transfer of 1-acyl-2-[(N-4-nitro-benzo-2-oxa-1,3 diazole) aminocaproyl] phosphatidylserine (NBD-PS) from a population of self-quenched donor vesicles. Inside-out RBC ghosts were endocytosed approximately 3 times faster than were right side-out control populations. Similarly, using NBD-PS vesicles at concentrations at which dilution of all the cell-associated analog in the recipient RBC could be unequivocally confirmed, we observed that the uptake of NBD-PS treated RBC by macrophages was significantly increased over that of control RBC populations. Fluorescence and electron microscopic observations revealed the formation of typical RBC-macrophage rosettes that were morphologically distinct from opsonized RBC-macrophage rosettes. Enhanced RBC binding to macrophages was also obtained with deoxygenated reversibly sickled cells (RSC); the enhancement correlated with increased exposure of outer leaflet PS in these cells. These findings suggest that PS is recognized by macrophages and that its exposure in the outer leaflet of RBC may have significant pathophysiologic implications.  相似文献   

19.
The C2 domain of PKCα (C2α) induces fluorescence self-quenching of NBD-PS in the presence of Ca2+, which is interpreted as the demixing of phosphatidylserine from a mixture of this phospholipid with phosphatidylcholine. Self-quenching of NBD-PS was considerably increased when phosphatidylinositol-4,5-bisphosphate (PIP2) was present in the membrane. When PIP2 was the labeled phospholipid, in the form of TopFluor-PIP2, fluorescence self-quenching induced by the C2 domain was also observed, but this was dependent on the presence of phosphatidylserine. An independent indication of the phospholipid demixing effect given by the C2α domain was obtained by using 2H-NMR, since a shift of the transition temperature of deuterated phosphatidylcholine was observed as a consequence of the addition of the C2α domain, but only in the presence of PIP2. The demixing induced by the C2α domain may have a physiological significance since it means that the binding of PKCα to membranes is accompanied by the formation of domains enriched in activating lipids, like phosphatidylserine and PIP2. The formation of these domains may enhance the activation of the enzyme when it binds to membranes containing phosphatidylserine and PIP2.  相似文献   

20.
Large unilamellar vesicles (LUV) that contained a fluorescent analog of phosphatidylserine (NBD-PS) were used in model systems to determine the feasibility of employing phosphatidylserine decarboxylase (PS-decarboxylase) to generate asymmetric vesicles and to determine the transbilayer distribution of PS. PS-decarboxylase prepared by sonication of Escherichia coli JA 200 pLC 8-47 was found to be stable in detergent-free buffers and catalyzed the conversion of NBD-PS to NBD-phosphatidylethanolamine (NBD-PE). PS-decarboxylase was capable of decarboxylating virtually all of the NBD-PS present in the outer leaflet of LUV containing a symmetric or asymmetric (outside only) distribution of NBD-PS, but not NBD-PS present in the inner leaflet of the vesicles. The ability of PS-decarboxylase to decarboxylate only NBD-PS located in the outer leaflet of the vesicles was independently verified by resonance energy transfer (between NBD-PS and (lissamine) rhodamine B-labeled phosphatidylethanolamine) and by derivatization with trinitrobenzenesulfonic acid (TNBS). These techniques revealed that the exchangeable pool (the fraction of NBD-PS on the outer leaflet) and the respective fraction of Tnp-(NBD-PS) formed were equivalent to the extent of PS-decarboxylase-mediated decarboxylation of NBD-PS to NBD-PE. These results show that PS-decarboxylase can be used to generate asymmetric vesicles (i.e., PS inside, PE outside) and determine the intrabilayer distribution of PS in model membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号