首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics.  相似文献   

2.
Challenge of Rhodobacter capsulatus cells with the superoxide propagator methyl viologen resulted in the induction of a diaphorase activity identified as a member of the ferredoxin (flavodoxin)-(reduced) nicotinamide adenine dinucleotide phosphate (NADP(H)) reductase (FPR) family by N-terminal sequencing. The gene coding for Rhodobacter FPR was cloned and expressed in Escherichia coli. Both native and recombinant forms of the enzyme were purified to homogeneity rendering monomeric products of approximately 30 kDa with essentially the same spectroscopic and kinetic properties. They were able to bind and reduce Rhodobacter flavodoxin (NifF) and to mediate typical FPR activities such as the NADPH-driven diaphorase and cytochrome c reductase.  相似文献   

3.
Kappler U  McEwan AG 《FEBS letters》2002,529(2-3):208-214
The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors.  相似文献   

4.
The circular dichroism (CD) of dihaem cytochrome b from mitochondrial and bacterial ubiquinol:cytochrome-c reductase (bc1 complex) has been characterized. The dichroic properties of the yeast purified cyt b are very similar to those of the native cyt b within the mitochondrial bc1 complex. The CD spectra in the Soret region of the native cytochrome b present in all species studied show an intense bisignate Cotton effect having a zero-crossing wavelength close to the absorbance maximum. In preparations partially or completely depleted of the low-potential b haem (b1) the CD spectra exhibit a single positive Cotton effect resembling the corresponding absorption spectrum. This is particularly evident in the purified cytochrome b-562 from Rhodobacter sphaeroides R26, which contains only the high-potential b haem (bh). These spectral features together with the reconstitution of the cytochrome b1 haem have been used to resolve the CD contribution of each haem to the CD spectra of cytochrome b. The mechanisms which might be responsible for the optical activity have been examined. It appears that the CD spectra of cytochrome b derive from both the mutual interaction of its two haems (giving rise to exciton coupling) and to the interaction of each haem with nearby aromatic residues, other than the pairs of histidines which coordinate the iron. The dipole coupling between haem and aromatic residues appears to be more important than exciton coupling in the CD spectra of oxidized b cytochromes and correlations have been made between the CD features and the proposed structure of cytochrome b.  相似文献   

5.
Cytochrome o, solubilized from the membrane of Azotobacter vinelandii, has been purified to homogeneity as judged by ultracentrifugation and polyacrylamide gel electrophoresis. The detergent-containing cytochrome o is composed of one polypeptide chain with a molecular weight of 28 000-29 000, associated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme exists as a dimer by gel filtration analysis. The amino analysis which reveals the majority of residues are of hydrophobic nature. The cytochrome o oxidase contains protoheme as its prosthetic group and about 20-40% of phospholipids. The phospholipids are identified as phosphatidylethanolamine and phosphatidylglycerol by radioautographic analysis using 2-dimensional thin-layer chromatography. No copper or nonheme iron can be detected in the purified oxidase preparation by atomic absorption and chemical analyses. Oxidation-reduction titration shows this membrane-bound cytochrome o to be a low-potential component, and Em was determined to be -18 mV in the purified form and -30 mV in the membrane-bound form. Both forms bind CO with a reduced absorption peak at 559 and 557-558 nm in the native and solubilized forms, respectively. A high-spin (g = 6.0) form is assigned to the oxidized cytochrome o by electron paramagnetic resonance analysis, and KCN abolishes this high-spin signal. CO titration of purified cytochrome o in the anaerobic conditions shows the enzyme binds one CO per four protohemes and a dissociation constant is estimated to be 3.2 microM for CO. Cyanide reacts with purified cytochrome o in both oxidized and CO-bound forms, identified by specific spectral compounds absorbed at the Soret region. Cytochrome c, often co-purified with cytochrome c from the membrane, cannot serve as a reductant for cytochrome o in vitro, due to the apparent potential difference of about 300 mV. Upon separation, both cytochrome o and cytochrome c4 show a great tendency of aggregation. Furthermore, the oxidase activity (measured by tetramethyl-p-phenylenediamine oxidation rate) decreases as the cytochrome c concentration is decreased by ammonium sulfate fractionation. All these suggest the structural and functional complex nature of cytochrome c4 and cytochrome o in the membrane of A. vinelandii.  相似文献   

6.
A method has been developed for purification of highly active ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes from wild-type Rhodobacter sphaeroides, Rhodobacter capsulatus MT1131, bovine heart and yeast mitochondria. This is the first report of the isolation of cytochrome bc1 complex from a wild-type strain of Rb. sphaeroides and from any strain of Rb. capsulatus. The purification involves extraction of membranes with dodecyl maltoside and two successive DEAE column chromatography steps. All of the resulting bc1 complexes are free of succinate dehydrogenase and cytochrome c oxidase activities. The purified bc1 complexes from both photosynthetic bacteria contain four polypeptide subunits, although the molecular weights of some of their subunits differ. They are also free of reaction center and light-harvesting pigments and polypeptides. The turnover number of the Rb. sphaeroides complex is 128 s-1, and that of the Rb. capsulatus complex is 64 s-1. The bc1 complex from bovine heart contains eight polypeptides and has a turnover number of 1152 s-1, while the yeast complex contains nine polypeptides and has a turnover number of 219 s-1. The activities of these complexes are equal to or better than those commonly obtained by previously reported methods. This method of purification is relatively simple, reproducible, and yields cytochrome bc1 complexes which largely retain the turnover number of the starting material and are pure on the basis of optical spectra, enzymatic activities and polypeptide composition. The purification of cytochrome bc1 complexes from energy-transducing membranes which differ markedly in their lipid and protein composition makes it likely that with minor modifications this method could be applied to species other than those described here.  相似文献   

7.
The cytochrome c(1) subunit of the ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) contains a single heme group covalently attached to the polypeptide via thioether bonds of two conserved cysteine residues. In the photosynthetic bacterium Rhodobacter (Rba.) capsulatus, cytochrome c(1) contains two additional cysteines, C144 and C167. Site-directed mutagenesis reveals a disulfide bond (rare in monoheme c-type cytochromes) anchoring C144 to C167, which is in the middle of an 18 amino acid loop that is present in some bacterial cytochromes c(1) but absent in higher organisms. Both single and double Cys to Ala substitutions drastically lower the +320 mV redox potential of the native form to below 0 mV, yielding nonfunctional cytochrome bc(1). In sharp contrast to the native protein, mutant cytochrome c(1) binds carbon monoxide (CO) in the reduced form, indicating an opening of the heme environment that is correlated with the drop in potential. In revertants, loss of the disulfide bond is remediated uniquely by insertion of a beta-branched amino acid two residues away from the heme-ligating methionine 183, identifying the pattern betaXM, naturally common in many other high-potential cytochromes c. Despite the unrepaired disulfide bond, the betaXM revertants are no longer vulnerable to CO binding and restore function by raising the redox potential to +227 mV, which is remarkably close to the value of the betaXM containing but loop-free mitochondrial cytochrome c(1). The disulfide anchored loop and betaXM motifs appear to be two independent but nonadditive strategies to control the integrity of the heme-binding pocket and raise cytochrome c midpoint potentials.  相似文献   

8.
Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.  相似文献   

9.
The oxidized cytochrome c(2) from the purple phototrophic bacteria, Rhodobacter sphaeroides and Rhodobacter capsulatus, bind the neutral species of imidazole (K(a) = 1440 +/- 40 M(-1)) 50 times more strongly than does horse mitochondrial cytochrome c (K(a) = 30 +/- 1 M(-1)). The kinetics of imidazole binding are consistent with a change in rate-limiting step at high ligand concentrations for all three proteins. This is attributed to a conformational change leading to breakage of the iron-methionine bond which precedes imidazole binding. The three-dimensional structure of the Rb. sphaeroides cytochrome c(2) imidazole complex (Axelrod et al., Acta Crystalogr. D50, 596-602) supports the view that the conformational changes are essentially localized to approximately seven residues on either side of the ligated methionine and there is a hydrogen bond between the Phe 102 carbonyl, an internal water, and the bound imidazole. Insertions and deletions in this region of cytochrome c(2), the presence of a proline near the methionine, and the smaller size of the dynamic region of horse cytochrome c suggest that the stabilizing hydrogen bond is not present in horse cytochrome c, hence, the dramatic difference in affinity for imidazole. The kinetics of ligand binding do not correlate with either the strength of the iron-methionine bond as measured by the pK of the 695-nm absorption band or the overall stability of the cytochromes studied. However, the very similar imidazole binding properties of the two cytochromes c(2) indicate that the Rb. sphaeroides cytochrome c(2)-imidazole complex structure is an excellent model for the corresponding Rb. capsulatus cytochrome c(2) complex. It is notable that the movement of the peptide chain in the vicinity of the ligated methionine has been preserved throughout evolution and suggests a role in the function of c-type cytochromes.  相似文献   

10.
We report the cloning and sequencing of the gene containing cytochrome c' (cycP) from the photosynthetic purple bacterium Rhodobacter capsulatus and the regions flanking that gene. Mutant strains unable to synthesize cytochrome c' had increased sensitivity to nitrosothiols and to nitric oxide (which binds to the heme moiety of cytochrome c').  相似文献   

11.
A recombinant form of the prototypic diheme bacterial cytochrome c peroxidase (BCCP) from Pseudomonas aeruginosa (PsaCCP) has been expressed in Escherichia coli and purified to homogeneity. This material was used to carry out the first integrated biochemical, spectroscopic and structural investigation of the factors leading to reductive activation of this class of enzymes. A single, tightly bound, Ca2+ ion (K = 3 x 10(10) M-1) found at the domain interface of both the fully oxidized and mixed-valence forms of the enzyme is absolutely required for catalytic activity. Reduction of the electron-transferring (high-potential) heme in the presence of Ca2+ ions triggers substantial structural rearrangements around the active-site (low-potential) heme to allow substrate binding and catalysis. The enzyme also forms a mixed-valence state in the absence of Ca2+ ions, but a combination of electronic absorption, and EPR spectroscopies suggests that under these circumstances the low potential heme remains six-coordinate, unable to bind substrate and therefore catalytically inactive. Our observations strongly suggest that the two mixed-valence forms of native PsaCCP reported previously by Foote and colleagues (Foote, N., Peterson, J., Gadsby, P., Greenwood, C., and Thomson, A. (1985) Biochem. J. 230, 227-237) correspond to the Ca2+-loaded and -depleted forms of the enzyme.  相似文献   

12.
Hydrogenases of phototrophic microorganisms   总被引:4,自引:0,他引:4  
I N Gogotov 《Biochimie》1986,68(1):181-187
This review surveys recent work done in the laboratory of the author and related laboratories on the properties and possible practical applications of hydrogenases of phototrophic microorganisms. Homogeneous hydrogenase preparations were obtained from purple non-sulfur (Rhodospirillum rubrum S1, Rhodobacter capsulatus B10) and purple sulfur (Chromatium vinosum D, Thiocapsa roseopersicina BBS) bacteria, and from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum L; highly purified hydrogenase samples were prepared from the cyanobacterium Anabaena cylindrica and from the green alga Chlamydomonas reinhardii. It was shown that hydrogenases of R. capsulatus and T. roseopersicina contain Ni and Fe-S cluster. The cytochromes of the c or b type serve as native electron acceptors for the hydrogenases of the purple bacteria and cyanobacteria; rubredoxin or cytochrome c for the hydrogenase of the green sulfur bacterium; and ferredoxin for Ch. reinhardii hydrogenase. The hydrogenase of T. roseopersicina BBS reversibly activates H2 at Eh less than -290 mV (pH 7), whereas those from R. capsulatus and from C. limicola f. thiosulfatophilum exhibit their maximum activity at Eh greater than -300 mV and are thus favourable only for the H2 uptake. Hydrogenase synthesis in different phototrophs depends on pO2, H2 concentrations and organic substrates. Organic compounds, which serve as electron donors and carbon sources, repress hydrogenase synthesis in R. rubrum, R. capsulatus and in Ectothiorhodospira shaposhnikovii when present at high concentrations. The synthesis of T. roseopersicina hydrogenase is constitutive. H2 notably stimulates hydrogenase activity in R. capsulatus. The synthesis of hydrogenase in R. sphaeroides 2R occurs only in the presence of H2 and does not depend on the presence of organic compounds in the medium.  相似文献   

13.
Li J  Osyczka A  Conover RC  Johnson MK  Qin H  Daldal F  Knaff DB 《Biochemistry》2003,42(29):8818-8830
The roles of two evolutionarily conserved aromatic residues in the cytochrome c(1) component of the Rhodobacter capsulatus cytochrome bc(1) complex, phenylalanine 138 and tyrosine 194, were analyzed by site-directed mutagenesis, in combination with biophysical and biochemical measurements. Changing Phe138 to either alanine or valine, but not to tyrosine, results in redox heterogeneity of cytochrome c(1). Replacement of Phe138 by an aliphatic amino acid also caused changes in the EPR spectrum of the cytochrome and resulted in decreases in the steady-state V(max) for the hydroquinone/cytochrome c oxidoreductase activity of cytochrome bc(1) complexes containing the mutated cytochrome c(1). These findings indicate that the presence of an aromatic residue at position 138 is essential for maintaining the native environment of the cytochrome c(1) heme. In contrast, replacement of Tyr194 by aliphatic amino acids had no significant effect on either the E(m) of cytochrome c(1) or the steady-state activity parameters. Site-directed mutagenesis of glutamate and aspartate residues in a conserved acidic patch (region 2) on Rb. capsulatus cytochrome c(1) suggests that these negatively charged residues do not play a role in the docking of cytochrome c(2) with the cytochrome bc(1) complex.  相似文献   

14.
The dorC gene of the dimethyl sulfoxide respiratory (dor) operon of Rhodobacter capsulatus encodes a pentaheme c-type cytochrome that is involved in electron transfer from ubiquinol to periplasmic dimethyl sulfoxide reductase. DorC was expressed as a C-terminal fusion to an 8-amino acid FLAG epitope and was purified from detergent-solubilized membranes by ion exchange chromatography and immunoaffinity chromatography. The DorC protein had a subunit Mr = 46,000, and pyridine hemochrome analysis indicated that it contained 5 mol heme c/mol DorC polypeptide, as predicted from the derived amino acid sequence of the dorC gene. The reduced form of DorC exhibited visible absorption maxima at 551.5 nm (alpha-band), 522 nm (beta-band), and 419 nm (Soret band). Redox potentiometry of the heme centers of DorC identified five components (n = 1) with midpoint potentials of -34, -128, -184, -185, and -276 mV. Despite the low redox potentials of the heme centers, DorC was reduced by duroquinol and was oxidized by dimethyl sulfoxide reductase.  相似文献   

15.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

16.
1. H(+)-transhydrogenase from Rhodobacter capsulatus is an integral membrane protein which, unlike the enzyme from Rhodospirillum rubrum, does not require the presence of a water-soluble component for activity. 2. The enzyme from Rb. capsulatus was solubilised in Triton X-100 and subjected to ion-exchange, hydroxyapatite and then gel-exclusion column chromatography. SDS/PAGE of the purified enzyme revealed the presence of two polypeptides with apparent Mr 53,000 and 48,000. Other minor components which were stained on the electrophoresis gels or which were revealed on Western blots exposed to antibodies raised to total membrane proteins, were probably contaminants. 3. Antibodies raised to the 53-kDa and 48-kDa polypeptides cross-reacted with equivalent polypeptides in Western blots of solubilised membranes from Rb. capsulatus, Rhodobacter sphaeroides and Rhs. rubrum. The significance of this finding is discussed in the context of the hypothesis [Fisher, R.R. & Earle, S.R. (1982) The pyridine nucleotide coenzymes, pp. 279-324, Academic Press, New York] that the soluble component associated with H(+)-transhydrogenase from Rhs. rubrum is an integral part of the catalytic machinery. Antibodies against the 48-kDa and 53-kDa polypeptides of the Rb. capsulatus enzyme cross-reacted with equivalent polypeptides in solubilised membranes of Escherichia coli. 4. The dependence of the rate of H- transfer by purified H(+)-transhydrogenase on the nucleotide substrate concentrations under steady-state conditions, the effects of inhibition by nucleotide products and the inhibition by 2'-AMP and by 5'-AMP suggest that the reaction proceeds by the random addition of substrates to the enzyme with the formation of a ternary complex. 5. In conflict with this conclusion, the reduction of acetylpyridine adenine dinucleotide (AcPdAD+) by NADH in the absence of NADP+ by bacterial membranes was earlier taken as evidence for the existence of a reduced enzyme intermediate [Fisher, R.R. & Earle, S.R. (1982) The pyridine nucleotide coenzymes, pp. 279-324, Academic Press, New York]. However, it is shown here that although chromatophore membranes of Rb. capsulatus catalysed the reduction of AcPdAD+ by NADH, the reaction was not associated with the purified H(+)-transhydrogenase. Moreover, in contrast with the true transhydrogenase reaction, the reconstitution of AcPdAD+ reduction by NADH (in the absence of NADP+) in washed membranes of Rhs. rubrum with partially purified transhydrogenase factor, was only additive.  相似文献   

17.
The significance of the exposed haem edge in cytochrome c was directly probed by chemically modifying the partially exposed haem propionate in the crevice region around residues threonine-78 and threonine-49. Reaction of tuna heart cytochrome c with a water-soluble carbodi-imide at pH 3.7 in the absence of any added nucleophilic base leads to the covalent addition of substituted N-acylureas to the protein at two sites. One site has been shown to be a haem propionate by isotope-tracer and i.r.-spectral analysis of haem purified from the apoprotein. The other site is aspartial acid-62 on the back of the molecule. The modified cytochrome c demonstrates abnormal properties, including auto-oxidizability, a reduction potential of + 105mV, a reversible transition to a high-spin species below pH 5.3, no 695 nm charge-transfer band in the ferric state and abnormal binding to mitochondrial membranes. The derivative does react with cytochrome oxidase in deoxycholate-treated submitochondrial particles or in purified preparations with a specific activity of 43-65% compared with that obtained with native cytochrome c. The results are consistent with the view that an intact haem crevice is essential for normal values for physiochemical characteristics, but the significant residual enzymic activity suggests that the electron-transfer interface and/or the cytochrome oxidase-binding site cannot be localized solely in the region of the exposed haem propionate.  相似文献   

18.
Oxidized cytochrome c(1) in photosynthetic bacterium Rhodobacter capsulatus cytochrome bc(1) reversibly binds cyanide with surprisingly high, micromolar affinity. The binding dramatically lowers the redox midpoint potential of heme c(1) and inhibits steady-state turnover activity of the enzyme. As cytochrome c(1), an auxiliary redox center of the high-potential chain of cytochrome bc(1), does not interact directly with the catalytic quinone/quinol binding sites Q(o) and Q(i), cyanide introduces a novel, Q-site independent locus of inhibition. This is the first report of a reversible inhibitor that manipulates the energetics and electron transfers of the high-potential redox chain of cytochrome bc(1), while maintaining quinone substrate catalytic sites in an intact form.  相似文献   

19.
Two c-type cytochromes were purified and characterized by electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopic techniques, from the sulfate-reducer nitrogen-fixing organism, Desulfovibrio desulfuricans strain Berre-Eau (NCIB 8387). The purification procedures included several chromatographic steps on alumina, carboxymethylcellulose and gel filtration. A tetrahaem and a monohaem cytochrome were identified. The multihaem cytochrome has visible, EPR and NMR spectra with general properties similar to other low-potential bis-histidinyl axially bound haem proteins, belonging to the class of tetrahaem cytochrome c3 isolated from other Desulfovibrio species. The monohaem cytochrome c553 is ascorbate-reducible and its EPR and NMR data are characteristic of a cytochrome with methionine-histidine ligation. Their properties are compared with other homologous proteins isolated from sulfate-reducing bacteria.  相似文献   

20.
Beef heart cytochrome c oxidase contains two cytochromes, a and a3, and Pseudomonas aeruginosa cytochrome c peroxidase has one high- and one low-potential c haem, cHP and cLP. The parallelism in co-ordination and spin states between cytochrome a and haem cHP on the one hand and between cytochrome a3 and haem cLP on the other is illustrated. The two latter haems become accessible to cyanide, when the former are reduced. Such reduction also leads to an activation of the enzymes. Mechanisms are presented in which ferryl forms of cytochromes a3 and haem cLP take part. The enzymes reach an oxidation state, formally the same as resting enzyme, but with different properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号