首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pitcher RS  Brittain T  Watmough NJ 《Biochemistry》2003,42(38):11263-11271
Cytochrome cbb(3) oxidase, from Pseudomonas stutzeri, contains a total of five hemes, two of which, a b-type heme in the active site and a hexacoordinate c-type heme, can bind CO in the reduced state. By comparing the cbb(3) oxidase complex and the isolated CcoP subunit, which contains the ligand binding bishistidine-coordinated c-type heme, we have deconvoluted the contribution made by each center to CO binding. A combination of rapid mixing and flash photolysis experiments, coupled with computer simulations, reveals the kinetics of the reaction of c-type heme with CO to be complex as a result of the need to displace an endogenous axial ligand, a property shared with nonsymbiotic plant hemoglobins and some heme-based gas sensing domains. The recombination of CO with heme b(3), unlike all other heme-copper oxidases, including mitochondrial cytochrome c oxidase, is independent of ligand concentration. This observation suggests a very differently organized dinuclear center in which CO exchange between Cu(B) and heme b(3) is significantly enhanced, perhaps reflecting an important determinant of substrate affinity.  相似文献   

2.
The cbb(3) cytochrome c oxidase of Rhodobacter sphaeroides consists of four nonidentical subunits. Three subunits (CcoN, CcoO, and CcoP) comprise the catalytic "core" complex required for the reduction of O(2) and the oxidation of a c-type cytochrome. On the other hand, the functional role of subunit IV (CcoQ) of the cbb(3) oxidase was not obvious, although we previously suggested that it is involved in the signal transduction pathway controlling photosynthesis gene expression (Oh, J. I., and Kaplan, S. (1999) Biochemistry 38, 2688-2696). Here we go on to demonstrate that subunit IV protects the core complex, in the presence of O(2), from proteolytic degradation by a serine metalloprotease. In the absence of CcoQ, we suggest that the presence of O(2) leads to the loss of heme from the core complex, which destabilizes the cbb(3) oxidase into a "degradable" form, perhaps by altering its conformation. Under aerobic conditions the absence of CcoQ appears to affect the CcoP subunit most severely. It was further demonstrated, using a series of COOH-terminal deletion derivatives of CcoQ, that the minimum length of CcoQ required for stabilization of the core complex under aerobic conditions is the amino-terminal approximately 48-50 amino acids.  相似文献   

3.
4.
Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex   总被引:1,自引:0,他引:1  
The cbb3-type cytochrome c oxidases as members of the heme-copper oxidase superfamily are involved in microaerobic respiration in both pathogenic and non-pathogenic proteobacteria. The biogenesis of these multisubunit enzymes, encoded by the ccoNOQP operon, depends on the ccoGHIS gene products, which are proposed to be specifically required for co-factor insertion and maturation of cbb3-type cytochrome c oxidases. Here, the assembly of the cbb3-type cytochrome c oxidase from the facultative photosynthetic model organism Rhodobacter capsulatus was investigated using blue-native polyacrylamide gel electrophoresis. This process involves the formation of a stable but inactive 210 kDa sub-complex consisting of the subunits CcoNOQ and the assembly proteins CcoH and CcoS. By recruiting monomeric CcoP, this sub-complex is converted into an active 230 kDa CcoNOQP complex. Formation of these complexes and the stability of the monomeric CcoP are impaired drastically upon deletion of ccoGHIS. In a ccoI deletion strain, the 230 kDa complex was absent, although monomeric CcoP was still detectable. In contrast, neither of the complexes nor the monomeric CcoP was found in a ccoH deletion strain. In the absence of CcoS, the 230 kDa complex was assembled. However, it exhibited no enzymatic activity, suggesting that CcoS might be involved in a late step of biogenesis. Based on these data, we propose that CcoN, CcoO and CcoQ assemble first into an inactive 210 kDa sub-complex, which is stabilized via its interactions with CcoH and CcoS. Binding of CcoP, and probably subsequent dissociation of CcoH and CcoS, then generates the active 230 kDa complex. The insertion of the heme cofactors into the c-type cytochromes CcoP and CcoO precedes sub-complex formation, while the cofactor insertion into CcoN could occur either before or after the 210 kDa sub-complex formation during the assembly of the cbb3-type cytochrome c oxidase.  相似文献   

5.
Cytochrome cbb(3) oxidase is a member of the haem-copper oxidase superfamily. It is characterized by its high oxygen affinity, while retaining the ability to pump protons. These attributes are central to its proposed role in bacterial microaerobic metabolism. Recent spectroscopic characterization of both the cytochrome cbb(3) oxidase complex from Pseudomonas stutzeri and the dihaem ccoP subunit expressed separately in Escherichia coli has revealed the presence of a low-spin His/His co-ordinated c-type cytochrome. The low midpoint reduction potential of this haem (E(m)<+100 mV), together with its unexpected ability to bind CO in the reduced state at the expense of the distal histidine ligand, raises questions about the role of the ccoP subunit in the delivery of electrons to the active site.  相似文献   

6.
Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb(3)-Cox stability. Biogenesis of cbb(3)-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb(3)-Cox. Most bacteria expressing cbb(3)-Cox also contain the ccoGHIS genes, which encode putative cbb(3)-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb(3)-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (N(out)-C(in)) topology. In its absence, neither the fully assembled cbb(3)-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb(3)-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb(3)-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb(3)-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb(3)-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb(3)-Cox than an assembly factor per se.  相似文献   

7.
MauG is a diheme enzyme possessing a five-coordinate high-spin heme with an axial His ligand and a six-coordinate low-spin heme with His-Tyr axial ligation. A Ca(2+) ion is linked to the two hemes via hydrogen bond networks, and the enzyme activity depends on its presence. Removal of Ca(2+) altered the electron paramagnetic resonance (EPR) signals of each ferric heme such that the intensity of the high-spin heme was decreased and the low-spin heme was significantly broadened. Addition of Ca(2+) back to the sample restored the original EPR signals and enzyme activity. The molecular basis for this Ca(2+)-dependent behavior was studied by magnetic resonance and M?ssbauer spectroscopy. The results show that in the Ca(2+)-depleted MauG the high-spin heme was converted to a low-spin heme and the original low-spin heme exhibited a change in the relative orientations of its two axial ligands. The properties of these two hemes are each different than those of the heme in native MauG and are now similar to each other. The EPR spectrum of Ca(2+)-free MauG appears to describe one set of low-spin ferric heme signals with a large g(max) and g anisotropy and a greatly altered spin relaxation property. Both EPR and M?ssbauer spectroscopic results show that the two hemes are present as unusual highly rhombic low-spin hemes in Ca(2+)-depleted MauG, with a smaller orientation angle between the two axial ligand planes. These findings provide insight into the correlation of enzyme activity with the orientation of axial heme ligands and describe a role for the calcium ion in maintaining this structural orientation that is required for activity.  相似文献   

8.
The biosynthesis of methylamine dehydrogenase (MADH) from Paracoccus denitrificans requires four genes in addition to those that encode the two structural protein subunits. None of these gene products have been previously isolated. One of these, mauG, exhibits sequence similarity to diheme cytochrome c peroxidases and is required for the synthesis of the tryptophan tryptophylquinone (TTQ) prosthetic group of MADH. A system was developed for the homologous expression of MauG in P. denitrificans. Its signal sequence was correctly processed, and it was purified from the periplasmic cell fraction. The protein contains two covalent c-type hemes, as predicted from the deduced sequence. EPR spectroscopy reveals that the protein as isolated possesses about equal amounts of one high-spin heme with axial symmetry and one low-spin heme with rhombic symmetry. The low-spin heme contains a major and minor component suggesting a small degree of heme heterogeneity. The high-spin heme and the major low-spin heme component each exhibit resonances that are atypical of c-type hemes and dissimilar to those reported for diheme cytochrome c peroxidases. MauG exhibited only very weak peroxidase activity when assayed with either c-type cytochromes or o-dianisidine as an electron donor. Fully reduced MauG was shown to bind carbon monoxide and could be reoxidized by oxygen. The relevance of these unusual properties of MauG is discussed in the context of its role in TTQ biogenesis.  相似文献   

9.
J A Tan  J A Cowan 《Biochemistry》1990,29(20):4886-4892
A high molecular weight multiheme c-type cytochrome from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) has been spectroscopically characterized and compared with the tetraheme cytochrome c3. The protein contains a pentacoordinate high-spin heme (gz 6.0) and two hexacoordinate low-spin hemes (gz 2.95, gy 2.27, gx 1.48). From analysis of the g values for the low-spin hemes by the procedure of Blumberg and Peisach (Palmer, 1983) and comparison with with the optical spectra from a variety of c-type cytochromes, it is likely that these low-spin hemes are bound by two histidine residues. The NO derivative displayed typical rhombic EPR features (gx 2.07, gz 2.02, gy 1.99). Addition of azide does not lead to coupling between heme chromophores, but the ligand is accessible to the high-spin heme. The use of a glassy-carbon electrode to perform direct (no promoter) electrochemistry on the cytochrome is illustrated. Differential pulse polarography of the native protein gave two waves with reduction potentials of -59 (5) and -400 (8) mV (versus NHE). The cyanide adduct gave two waves with reduction potentials of -263 (8) and -401 (8) mV. The cytochrome was found to catalyze the reduction of nitrite and hydroxylamine.  相似文献   

10.
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

11.
MauG is a novel 42 kDa diheme protein which is required for the biosynthesis of tryptophan tryptophylquinone, the prosthetic group of methylamine dehydrogenase. The visible absorption and resonance Raman spectroscopic properties of each of the two c-type hemes and the overall redox properties of MauG are described. The absorption maxima for the Soret peaks of the oxidized and reduced hemes are 403 and 418 nm for the low-spin heme and 389 and 427 nm for the high-spin heme, respectively. The resonance Raman spectrum of oxidized MauG exhibits a set of marker bands at 1503 and 1588 cm(-1) which exhibit frequencies similar to those of the nu3 and nu2 bands of c-type heme proteins with bis-histidine coordination. Another set of marker bands at 1478 and 1570 cm(-1) is characteristic of a high-spin heme. Two distinct oxidation-reduction midpoint potential (E(m)) values of -159 and -244 mV are obtained from spectrochemical titration of MauG. However, the two nu3 bands located at 1478 and 1503 cm(-1) shift together to 1467 and 1492 cm(-1), respectively, upon reduction, as do the Soret peaks of the low- and high-spin hemes in the absorption spectrum. Thus, the two hemes with distinct spectral properties are reduced and oxidized to approximately the same extent during redox titrations. This indicates that the high- and low-spin hemes have similar intrinsic E(m) values but exhibit negative redox cooperativity. After the first one-electron reduction of MauG, the electron equilibrates between hemes. This makes the second one-electron reduction of MauG more difficult. Thus, the two E(m) values do not describe redox properties of distinct hemes, but the first and second one-electron reductions of a diheme system with two equivalent hemes. The structural and mechanistic implications of these findings are discussed.  相似文献   

12.
The heme environment and ligand binding properties of two relatively large membrane proteins containing multiple paramagnetic metal centers, cytochrome bo3 and bd quinol oxidases, have been studied by high field proton nuclear magnetic resonance (NMR) spectroscopy. The oxidized bo3 enzyme displays well-resolved hyperfine-shifted 1H NMR resonance assignable to the low-spin heme b center. The observed spectral changes induced by addition of cyanide to the protein were attributed to the structural perturbations on the low-spin heme (heme b) center by cyanide ligation to the nearby high-spin heme (heme o) of the protein. The oxidized hd oxidase shows extremely broad signals in the spectral region where protons near high-spin heme centers resonate. Addition of cyanide to the oxidized bd enzyme induced no detectable perturbations on the observed hyperfine signals, indicating the insensitive nature of this heme center toward cyanide. The proton signals near the low-spin heme b558 center are only observed in the presence of 20% formamide, consistent with a critical role of viscosity in detecting NMR signals of large membrane proteins. The reduced bd protein also displays hyperfine-shifted 1H NMR signals, indicating that the high-spin heme centers (hemes b595 and d) remain high-spin upon chemical reduction. The results presented here demonstrate that structural changes of one metal center can significantly influence the structural properties of other nearby metal center(s) in large membrane paramagnetic metalloproteins.  相似文献   

13.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   

14.
A comprehensive study of the thermodynamic redox behavior of the hemes from the cbb3 oxygen reductase from Bradyrhizobium japonicum was performed. This enzyme is a member of the C-type heme-copper oxygen reductase superfamily and has three subunits with six redox centers: four low-spin hemes and a high-spin heme and one copper ion, composing the site where oxygen is reduced. In this analysis, the visible spectra and redox properties of the five heme centers were deconvoluted. Their redox profiles and the pH dependence of the midpoint reduction potentials (redox-Bohr effect) were investigated. The reference reduction potentials (defined for a state where all centers are reduced) and homotropic interaction potentials were determined in the framework of a model of pairwise interacting redox centers. At pH 7.7, the reference reduction potentials for the three hemes c are 390, 300, and 220 mV, with low interaction potentials between them, weaker than -15 mV. For hemes b and b3, reference reduction potentials of 375 and 290 mV, respectively, were obtained; these two redox centers show an interaction potential weaker than -60 mV. The midpoint reduction potentials of all five hemes are pH-dependent. The study of these thermodynamic parameters is important in understanding the coupling mechanism of the redox and chemical processes during oxygen reduction. The analysis of the thermodynamic redox behavior of the cbb3 oxygen reductase contributes to the investigation of the mechanism of electron transfer and proton translocation by heme-copper oxygen reductases in general and indicates a thermodynamic coupling for the electron and proton transfer mechanisms.  相似文献   

15.
The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and M?ssbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Gon?alves, L.M.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I. & Rom?o, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.  相似文献   

16.
A novel bo3-type quinol oxidase was highly purified from Bacillus cereus PYM1, a spontaneous mutant unable to synthesize heme A and therefore spectroscopically detectable cytochromes aa3 and caa3. The purified enzyme contained 12.4 nmol of heme O and 11.5 nmol of heme B mg-1 protein. The enzyme was composed of two subunits with an Mr of 51,000 and 30,000, respectively. Both subunits were immunoreactive to antibodies raised against the B cereus aa3 oxidase. Moreover, amino-terminal sequence analysis of the 30-kDa subunit revealed that the first 19 residues were identical to those from the 30-kDa subunit of the B. cereus aa3 oxidase. The purified bo3 oxidase failed to oxidize ferrrocytochrome c (neither yeast nor horse) but oxidized tetrachlorohydroquinol with an apparent Km of 498 microM, a Vmax of 21 micromol of O2 min-1mg-1, and a calculated turnover of 55 s-1. The quinol oxidase activity with tetrachlorohydroquinol was inhibited by potassium cyanide and 2-n-heptyl 4-hydroxyquinoline-N-oxide with an I50 of 24 and 300 microM, respectively. Our results demonstrate that the bo3 oxidase of this mutant is not the product of a new operon but instead is a cytochrome aa3 apoprotein encoded by the qox operon of the aa3 oxidase of B. cereus wild type promiscuously assembled with hemes B and O replacing heme A, producing a novel bo3 cytochrome. This is the first reported example of an enzymatically active promiscuous oxidase resulting from the simultaneous substitution of its original hemes in the high and low spin sites.  相似文献   

17.
The single subunit terminal oxidase of Sulfolobus acidocaldarius, cytochrome aa3, was studied by resonance Raman spectroscopy. Results on the fully oxidized, the fully reduced, and the reduced carbon monoxide complex are reported and compared with those of eucaryotic cytochrome oxidase. It is shown that in both redox states the hemes a and a3 are in the six-coordinated low-spin and six-coordinated high-spin configuration, respectively. The resonance Raman spectra reveal far-reaching similarities of this archaebacterial with mammalian or plant enzymes except for the reduced form of heme a. The formyl substituent of this heme appears above 1640 cm-1, ruling out significant hydrogen bonding interactions which is in sharp contrast to beef heart cytochrome oxidase. In addition, frequency upshifts of the marker bands v4 and v2 are noted indicating differences in the electron density distribution within the molecular orbitals of the porphyrin.  相似文献   

18.
Aerobic phototrophic bacterium Roseobacter denitrificans has a nitric oxide reductase (NOR) homologue with cytochrome c oxidase (CcO) activity. It is composed of two subunits that are homologous with NorC and NorB, and contains heme c, heme b, and copper in a 1:2:1 stoichiometry. This enzyme has virtually no NOR activity. Electron paramagnetic resonance (EPR) spectra of the air-oxidized enzyme showed signals of two low-spin hemes at 15 K. The high-spin heme species having relatively low signal intensity indicated that major part of heme b3 is EPR-silent due to an antiferromagnetic coupling to an adjacent CuB forming a Fe-Cu binuclear center. Resonance Raman (RR) spectrum of the oxidized enzyme suggested that heme b3 is six-coordinate high-spin species and the other hemes are six-coordinate low-spin species. The RR spectrum of the reduced enzyme showed that all the ferrous hemes are six-coordinate low-spin species. ν(Fe-CO) and ν(C-O) stretching modes were observed at 523 and 1969 cm−1, respectively, for CO-bound enzyme. In spite of the similarity to NOR in the primary structure, the frequency of ν(Fe-CO) mode is close to those of aa3- and bo3-type oxidases rather than that of NOR.  相似文献   

19.
To probe the functional role of a bound ubiquinone-8 in cytochrome bo-type ubiquinol oxidase from Escherichia coli, we examined reactions with ubiquinol-1 and dioxygen. Stopped-flow studies showed that anaerobic reduction of the wild-type and the bound ubiquinone-free (DeltaUbiA) enzymes with ubiquinol-1 immediately takes place with four kinetic phases. Replacement of the bound ubiquinone with 2,6-dibromo-4-cyanophenol (PC32) suppressed the anaerobic reduction of the hemes with ubiquinol-1 by eliminating the fast phase. Flow-flash studies in the reaction of the fully reduced enzyme with dioxygen showed that the heme b-to-heme o electron transfer occurs with a rate constant of approximately 1x10(4) s(-1) in all three preparations. These results support our previous proposal that the bound ubiquinone is involved in facile oxidation of substrates in subunit II and subsequent intramolecular electron transfer to low-spin heme b in subunit I.  相似文献   

20.
The nature of the heme centers in the hexa-heme dissimilatory nitrite reductase from the bacterium Wolinella succinogenes has been investigated with EPR and magnetic circular dichroism spectroscopy. The EPR spectrum of the ferric enzyme is complex showing, in addition to magnetically isolated low-spin ferric hemes with g values of 2.93, 2.3 and 1.48, two sets of signals at g = 10.3, 3.7 and 4.8, 3.21, which we assign to two pairs of exchange coupled hemes. The MCD spectra show that the isolated hemes are bis-histidine coordinated and that there is one high-spin ferric heme. The exchange coupling is lost on treatment with SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号