首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kiwifruit plants (Actinidia deliciosa cv. Hayward) were grown in Hoagland nutrient solution with calcium nitrate, potassium nitrate, ammonium nitrate or ammonium chloride as the nitrogen source. Plants grown in the solution with nitrate nitrogen displayed a higher oxalate content, greater shoot length and leaf area, and higher content of ascorbic acid and NO3 ions in the leaves. Plants grown in the solution with ammonium nitrate, and particularly with ammonium chloride, showed low oxalate content, low content of ascorbic acid and NO3 , high content of Cl and Na+, low shoot length and leaf area. Oxalate formation appeared to be connected with the assimulation of nitrate, more precisely with nitrate reduction, while ammonium nitrogen assimilation did not induce the synthesis of oxalic acid.  相似文献   

2.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.1% formol as reducing agent, 2.5% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

3.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.l% formol as developed agent, 25% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

4.
Weissman , Gerard S. (Rutgers U., Camden, N. J.) Influence of ammonium and nitrate on the protein- and amino acids in shoots of wheat seedlings. Amer. Jour. Bot. 46(5): 339–346. 1959.—Total and protein nitrogen per shoot of wheat seedlings grown with endosperm attached increased at a steady rate during a 96-hr. growth period, and protein nitrogen, as a percentage of total nitrogen, remained constant at about 53%. Total and protein nitrogen concentration was greatest for 24-hr. shoots and declined as the shoots became older. Total and protein nitrogen were determined in 96-hr. shoots of seedlings grown with endosperm attached but also supplied with ammonium, nitrate, or both in the culture solution. Total nitrogen was greatest in shoots supplied with ammonium, but only 38% was in the form of protein. Maximum protein synthesis occurred in shoots grown in both ammonium and nitrate and protein nitrogen as a percentage of total nitrogen approximated that achieved in shoots lacking nitrogen in the culture solution. The protein amino acid composition of 48-, 72-, and 96-hr. shoots was very similar but differed from 24-hr. shoots which contained higher percentages of arginine and lysine and lower percentages of alanine and threonine. This may be correlated with the higher proportion of meristematic cells in 24-hr. shoots. The protein amino acids in shoots grown with ammonium resembled that of shoots lacking nitrogen in the culture solution, but nitrate shoot protein contained a higher percentage of arginine and a lower percentage of lysine. Nitrate may stimulate the formation of enzymes, possibly of a nitrate-reducing system, with high arginine- low lysine content. Free asparagine and glutamine were both at a maximum in ammonium shoots and at a minimum in nitrate shoots, but asparagine predominated in shoots supplied with ammonium while glutamine was greatest in nitrate shoots. Aspartic acid, asparagine, and glutamine appeared to have ammonia-storage functions, but glutamic acid appeared to be primarily concerned with protein synthesis. Amino acid accumulation was greatest in shoots supplied with both ammonium and nitrate. Protein synthesis in these appeared to be limited by inadequate concentrations of glutamic acid and proline. A hypothesis is proposed in explanation of the high glutamic acid concentration in shoots provided with ammonium and nitrate.  相似文献   

5.
Nitrate and total nitrogen contents, and nitrate reductase (NR) activity of the excised maize roots in buffered or unbuffered nitrate solution (at pH 6.5 or 4.5) as affected by putrescine (PUT), abscisic acid (ABA) and salicylic acid (SA) were investigated. In unbufferred solution, the NR activity was lower at pH 4.5 as compared to that at pH 6.5, but in bufferred solution the activity was higher at lower pH. Supply of 100 µM PUT or 500 µM SA, promoted NR activity and 50 µM ABA inhibited the activity at pH 6.5. However, at pH 4.5, PUT and SA inhibited NR activity and ABA had no effect. In most cases, the increase in NR activity was positively correlated with total organic nitrogen and a negatively with nitrate content. A reverse situation was found when NR activity was inhibited by the growth regulators.  相似文献   

6.
The method is based on substitution fixation at —25° C of quickly frozen tissue with a 90% alcohol solution saturated with silver nitrate. The silver salts are photochemically reduced in the histological preparations. At this low temperature very little staining of the protein structure of the tissue takes place. Silver ions adsorbed by the tissue can be removed by treatment with a sodium nitrate solution. About 2/3 of the brown material in the histological preparations of cerebral cortex was due to the chloride in the tissue, 1/6 to the phosphate, 1/10 to an unidentified (probably organic) anion, and 1/20 to bicarbonate. When the alcoholic silver nitrate solution used for the fixation is acidified, or the sections are treated with nitric acid, the colored material consists of reduced silver chloride only. A comparison of the light absorption in histological preparations of cortex treated with neutral and with acid solutions supported the conclusion that about 2/3 of the colored material in the tissue is reduced silver chloride.  相似文献   

7.
Ferric horseradish peroxidase reacts with nitrate and acetate in acidic solution to form weakly bound complexes. Competitive binding experiments with cyanide show that the nitrate binding site is not at the sixth coordination position of the heme iron. The nitrate inhibits compound I formation apparently by binding inside the heme pocket. One physical manifestation of this binding is to increase the apparent pKa value of the conjugate acid of a catalytic distal group.  相似文献   

8.
Zhao DY  Tian QY  Li LH  Zhang WH 《Annals of botany》2007,100(3):497-503
BACKGROUND AND AIMS: Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS: Maize seedlings grown in varying concentrations of nitrate for 7 d were used to evaluate the effects on root elongation of a nitric oxide (NO) donor (sodium nitroprusside, SNP), a NO scavenger (methylene blue, MB), a nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine, L-NNA), H(2)O(2), indole-3-acetic acid (IAA) and a nitric reducatse inhibitor (tungstate). The effects of these treatments on endogenous NO levels in maize root apical cells were investigated using a NO-specific fluorescent probe, 4, 5-diaminofluorescein diacetate (DAF-2DA) in association with a confocal microscopy. KEY RESULTS: Elongation of primary roots was negatively dependent on external concentrations of nitrate, and inhibition by high external nitrate was diminished when roots were treated with SNP and IAA. MB and L-NNA inhibited root elongation of plants grown in low-nitrate solution, but they had no effect on elongation of roots grown in high-nitrate solution. Tungstate inhibited root elongation grown in both low- and high-nitrate solutions. Endogenous NO levels in root apices grown in high-nitrate solution were lower than those grown in low-nitrate solution. IAA and SNP markedly enhanced endogenous NO levels in root apices grown in high nitrate, but they had no effect on endogenous NO levels in root apical cells grown in low-nitrate solution. Tungstate induced a greater increase in the endogenous NO levels in root apical cells grown in low-nitrate solution than those grown in high-nitrate solution. CONCLUSIONS: Inhibition of root elongation in maize by high external nitrate is likely to result from a reduction of nitric oxide synthase-dependent endogenous NO levels in maize root apical cells.  相似文献   

9.
目的研究酸雨对大豆幼苗根系形态及矿质营养代谢的影响。方法采用营养液培养的方法,研究不同pH 2.5、3.0、3.5、4.0和4.5模拟酸雨对大豆幼苗根系形态、根系活力及根系硝酸还原酶活性的影响。结果酸雨pH≤3.0时对大豆幼苗根系形态及根系活力的作用明显,呈现抑制作用;根系硝酸还原酶活性先随pH(≥3.5)的降低而缓慢升高,之后迅速降低。结论酸雨对大豆幼苗根系生长及矿质营养代谢有抑制作用,且pH=3.0是酸雨对大豆幼苗根系形态及矿质营养影响的关键点。  相似文献   

10.
Nitrate is a major nitrogen (N) source for most crops. Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels. Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency. The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots. Wheat seedlings grown in nutrient solution containing 2 mmol/L nitrate as the only nitrogen source for 2weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h. Treated wheat plants were then divided into two groups. One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L ^15N-labeled nitrate. The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate. Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction. When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced. These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media. Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.  相似文献   

11.
The size of tissue amino acid pools in plants may indicate nitrogen status and provide a signal that can regulate nitrate uptake and assimilation. The effects of treating barley roots with glutamine have been examined, first to identify the transport system for the uptake of the amino acid and then to measure root NR activity and cellular pools of nitrate. Treating N replete roots with glutamine elicited a change in the cell membrane potential and the size of this response was concentration dependent. In addition, the size of the electrical change depended on the previous exposures of the root to glutamine and was lost after a few cycles of treatment. Whole root tissue pools of glutamine and phenylalanine increased when roots were incubated in a nutrient solution containing 10 mM nitrate and 1 mM glutamine. Treating roots with 1 mM glutamine increased cytosolic nitrate activity from 3 mM to 7 mM and this change peaked after 2 h of treatment. Parallel measurements of root nitrate reductase activity during treatment with 1 mM glutamine showed a decrease. These measurements provide evidence for feedback regulation on NR activity that result in changes in cytosolic nitrate activity. After 6 h in glutamine both root NR activity and cytosolic nitrate activity returned to pretreatment values, while tissue concentrations of glutamine and phenylalanine remained elevated. The data are discussed in terms of the mechanisms that are most likely to be responsible for the changes in cytosolic nitrate.  相似文献   

12.
A satisfactory di-ammine-silver hydroxide solution may be repeatedly and consistently prepared by adding 9 or 10 volumes of 10% silver nitrate solution to 1 volume of 28% ammonia water, running in the first 6 or 7 volumes rapidly and proceeding cautiously from then on, shaking until clear after each addition, until a faint permanent turbidity is reached.

The essential nature of Gomori's iron alum treatment and of Wilder's uranyl nitrate step following the Weigert permanganate-oxalic-acid sequence appears to be an oxidation, since the same results may be achieved with chromic acid, hydrogen peroxide, sodium iodate and elemental iodine, and since this step is better omitted on previously chromated material.  相似文献   

13.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

14.
Tomato plants (Lycopersicon esculentum) grown in a complete nutrient solution for 8 days were transferred to a P-free solution of pH 6.0. Within 2 days of transfer the rate of alkalinization of the nutrient solution declined and by 4 days the solution had become acid. Nitrate transferred from roots to leaves was depressed over this period, and the rate of nitrate reductase activity in the leaves (the main site of assimilation of nitrate in tomato) had declined by 60% within 5 days of transfer. The activity of PEP carboxylase in the leaves of the P-deficient plants increased after 3 days, eventually becoming 3 times greater than in the leaves of plants adequately supplied with P. The PEP carboxylase activity in the roots of the P-deficient plants increased within 2 days, becoming 4 times greater after 8 days' growth. These results are discussed in relation to mechanisms for enhancement of P acquisition and maintenance of cation and anion uptake during P-deficiency.  相似文献   

15.
Axel Palmgren 《Acta zoologica》1948,29(2-3):377-392
Abstract The staining described in this paper fundamentally is performed by two manipulations, namely (1) the treatment of deparaffinized sections for about fifteen minutes in a solution containing 15 per cent silver nitrate, 10 per cent potassium nitrate and 0.05 per cent glycine, and (2) the reduction for one minute in a solution of 1 per cent pyrogallol, 55 per cent ethyl alcohol and a trace (0.002 per cent) of nitric acid. After toning, dehydrating and mounting in the usual manner the sections generally are ready for examinations within less than an hour. The method is available for specimens fixed in the ordinary fixatives but those containing oxidizing metal compounds. The procedure is discussed from a theoretical point of view and some results are shown in photomicrographs.  相似文献   

16.
Raab TK  Terry N 《Plant physiology》1995,107(2):575-585
Sugar beets (Beta vulgaris L. cv F58-554H1) were grown hydroponically in a 16-h light, 8-h dark period (photosynthetic photon flux density of 0.5 mmol m-2 s-1) for 4 weeks from sowing in half-strength Hoagland nutrient solution containing 7.5 mM nitrate. Half of the plants were then transferred to 7.5 mM ammonium N; the rest remained in solution with 7.5 mM nitrate N. Upon transfer from nitrate to ammonium, the total N concentration decreased sharply in the fibrous roots and petiole/midribs and increased substantially in the leaf blades. This was because of the decreased nitrate concentrations in fibrous roots and petioles and a concomitant increase in amino acid/amide-N and protein N in leaf blades. Sugar beets acclimated to ammonium partly by a 2.5-fold increase in glutamine synthase activity in fibrous roots and a 1.7-fold increase in leaf blades. Rapid ammonium assimilation into glutamine consumed carbon skeletons, leading to a depletion of foliar starch, sucrose, and maltose. Ammonium treatment stimulated activities of some glycolytic/Krebs cycle enzymes, e.g. pyruvate dehydrogenase. Nitrate-fed leaf blades contained substantially larger concentrations of osmolytes (i.e. nitrate, cations, and sucrose), which may have contributed to the faster rates of leaf expansion in nitrate-fed compared to ammonium-fed plants.  相似文献   

17.
Gao H  Jia Y  Guo S  Lv G  Wang T  Juan L 《Journal of plant physiology》2011,168(11):1217-1225
We investigated the effects of short-term root-zone hypoxic stress and exogenous calcium application or deficiency in an anoxic nutrient solution on nitrogen metabolism in the roots of the muskmelon cultivar Xiyu No. 1. Seedlings grown in the nutrient solution under hypoxic stress for 6 d displayed significantly reduced plant growth and soluble protein concentrations. However, NO3 uptake rate and activities of nitrate reductase and glutamate synthase were significantly increased. We also found higher amounts of nitrate, ammonium, amino acids, heat-stable proteins, polyamines, H2O2, as well as higher polyamine oxidase activity in the roots. In comparison to the reactions seen under hypoxic stress, exogenous calcium application led to a marked increase in plant weights, photosynthesis parameters, NO3 uptake rate and contents of nitrate, ammonium, amino acids (e.g., glutamic acid, proline, glycine, cystine, γ-aminobutyric acid), soluble and heat-stable proteins, free spermine, and insoluble bound polyamines. Meanwhile, exogenous calcium application resulted in significantly increased activities for nitrate reductase, glutamine synthetase, and glutamate synthase but decreased activities for diamine and polyamine oxidase, as well as lower H2O2 content in roots during exposure to hypoxia. However, calcium deficiency in the nutrient solution decreased plant weight, photosynthesis parameters, NO3 reduction, amino acids (e.g., alanine, aspartic acid, glutamic acid, γ-aminobutyric acid), protein, all polyamines except for free putrescine, and the activities of glutamate synthase and glutamine synthetase. Additionally, there was an increase in the NO3 uptake rate, polyamine oxidase activity and H2O2 contents under hypoxia-Ca. Simultaneously, exogenous calcium had little effect on nitrate absorption and transformation, photosynthetic parameters, and plant growth under normoxic conditions. These results suggest that calcium confers short-term hypoxia tolerance in muskmelon, most likely by promoting nitrate uptake and accelerating its transformation into amino acids, heat-stable proteins or polyamines, as well as by decreasing polyamine degradation in muskmelon seedlings.  相似文献   

18.
Determination of intracellular nitrate.   总被引:2,自引:0,他引:2       下载免费PDF全文
A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans.  相似文献   

19.
Plants of Lolium perenne L. were grown in sterile solution culture supplied with 2 mol m(-3) nitrogen as either nitrate or ammonium. Glutamine at 5 mol m(-3) was added to the nutrient solution of half the plants for 24 h. Root nitrate influx (at external nitrate concentrations 0-2000 mmol m(-3)) and amino acid concentrations were determined. In a second experiment the concentration of the added glutamine was varied from 0-5 mol m(-3) and nitrate influx determined at 250 and 2000 mmol m(-3). The maximum rate of influx attributed to the high affinity transport system (HATS) was reduced by 66% by the presence of glutamine achieved through an 84% reduction in its constitutive component and a 59% reduction in its inducible component. Influx attributed to LATS was unaffected by the addition of glutamine. The inhibition of total nitrate influx by glutamine was positively related to the contribution of HATS to the total influx. In both nitrate- and ammonium-grown plants, the concentration of glutamine required to inhibit nitrate influx significantly was lower when influx was determined at 250 mmol m(-3) compared with 2000 mmol m(-3) nitrate. The addition of glutamine increased its concentrations in root tissue. However, the results cannot be attributed to changes in glutamine alone as its addition also resulted in increased concentrations of other amino acids. Implications for plants growing under field conditions are discussed.  相似文献   

20.
Fungi of a forest soil nitrifying at low pH values   总被引:4,自引:0,他引:4  
Abstract No autotrophic nitrifying organisms were found in a podzolic brown earth forming nitrate. 350 fungi and aerobic heterotrophic bacteria were isolated from this soil and examined for their nitrifying abilities. About one quarter of the isolates produced 0.05–0.90 mg N·1−1 nitrite or nitrate in peptone solution, soil extract mixture or sterilised soil. The nitrification rate of the most active fungus, Verticillium lecanii , was highest at pH 3.5 in defined media. The results support the significance of heterotrophic nitrification in acid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号