首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation surveys were carried out at 24 sampling stations distributed over four land use types, namely near-primary forest, secondary forest, agroforestry systems and annual crop lands in the northeastern part of the Korup region, Cameroon, to assess the impact of forest conversion on trees and understorey plants. Tree species richness decreased significantly with increasing level of habitat modification, being highest and almost equal in secondary and near-primary forests. Understorey plant species richness was significantly higher in annual crop lands than in other land use types. The four land use types differed in tree and understorey plant species composition, the difference being smaller among natural forests. Tree and understorey plant density differed significantly between habitat types. Density was strongly correlated with species richness, both for trees and understorey plants. Five tree and 15 understorey plant species showed significant responses to habitat. A 90% average drop in tree basal area from forest to farmland was registered. Our findings support the view that agroforestry systems with natural shade trees can serve to protect many forest species, but that especially annual crop lands could be redesigned to improve biodiversity conservation in agricultural landscapes of tropical rainforest regions.  相似文献   

2.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

3.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

4.
Abstract Changes in regeneration patterns in a subtropical rainforest in north‐east New South Wales (Australia) are presented for a 12‐year period during the 3rd and 4th decades following repeated single‐tree selection logging. Changes were investigated using multivariate and univariate approaches. There were no significant differences in floristic assemblages within and between censuses. However, two contrasting trends of changes in plant groups were detected. In trees with a diameter at breast height (d.b.h.; that is, 1.3 m above the ground level) ≥ 10 cm, both the density and species richness increased in the shade‐tolerant group, while density increased and species richness decreased in the shade‐intolerant group. Among smaller sized regenerating species including trees (1.3 m in height < 10 cm d.b.h.), a general decrease in species richness was observed along with significant changes in stem densities where the number of stems in the shade‐tolerant species increased while that of both shade‐intolerant and vine species decreased. Excluding the vines and understorey species from the broader regenerating species, revealed a decrease in species richness in juvenile canopy tree, and a significant change in densities with the number of stems in the shade‐tolerant increasing while that of shade‐intolerant trees decreased. A comparison between the canopy trees ≥ 10 cm d.b.h. and the juvenile canopy trees group showed that these groups were tending towards similar floristic assemblages. These results suggest gradual replacement of shade‐intolerant by shade‐tolerant species as stands tend toward later stages of regeneration. This study shows that the inclusion of regenerating species in long‐term studies is both complementary to the larger plant component and more revealing of both trends and changes.  相似文献   

5.
Question: Thousands of small isolated forest fragments remain around churches (“church forests”) in the almost completely deforested Ethiopian Highlands. We questioned how the forest structure and composition varied with altitude, forest area and human influence. Location: South Gondar, Amhara National Regional State, Northern Ethiopia. Methods: The structure and species composition was assessed for 810 plots in 28 church forests. All woody plants were inventoried, identified and measured (stem diameter) in seven to 56 10 m x 10‐m plots per forest. Results: In total, 168 woody species were recorded, of which 160 were indigeneous. The basal area decreased with tree harvest intensity; understorey and middle‐storey density (<5 cm DBH trees) decreased with grazing; overstorey density (>5 cm DBH trees) increased with altitude. The dominance of a small set of species increased with altitude and grazing intensity. Species richness decreased with altitude, mainly due to variation in the richness of the overstorey community. Moreover, species richness in the understorey decreased with grazing intensity. Conclusions: We show how tree harvesting intensity, grazing intensity and altitude contribute to observed variations in forest structure, composition and species richness. Species richness was, however, not related to forest area. Our study emphasizes the significant role played by the remaining church forests for conservation of woody plant species in North Ethiopian Highlands, and the need to protect these forests for plant species conservation purposes.  相似文献   

6.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

7.
Climbers play different roles in forest biology and ecology and are the first to be eliminated during forest clearing but little is known about the species composition, distribution and relationship with tree species of this group of plants of tropical forest. This study thus investigated the species composition, abundance and tree relationship of climbers along altitudinal gradient in four 0.06 ha plots in a secondary forest at Ile‐Ife, Nigeria. All trees ≥10 cm g.b.h were examined for the presence of climbers in the plots. There were 49 climber species consisting of 35 liana and fourteen vine species distributed over 41 genera and 28 families in the forest. Lianas contributed 34% and vines 13.7% of the plant species in the forest. Climber basal area, density, number of species, genera and families increased with altitude. Forty‐two per cent (42%) of the trees in the forest carried climbers. There was significant positive correlation (P ≤ 0.05) between girth sizes of host trees of 31–50 cm with the girths of climbers on them indicating that trees of these girth sizes are highly susceptible to climber infestation. Tree species host density and size are important factors in determining the presence of climbers on a tree.  相似文献   

8.
Abstract Interspecific variation among wood density (WD), wood water content (WWC), tree mortality and diameter at breast height (d.b.h.) increment was examined for 27 tree species (from 13 families), based on a 9‐year interval data obtained from a permanent 1‐ha forest plot setup for long‐term studies of tree dynamics in Kuala Belong rainforest, Brunei, on Borneo Island. The species were also categorized into three adult stature groups of understorey (maximum height ≤15–20 m tall, n = 14), midcanopy (maximum height, 20–30 m tall, n = 8) and canopy/emergent (>maximum height, >30 m tall, n = 5) tree species. All measured traits varied appreciably among species. Tree WD varied between 0.3 and 0.8 g cm−3, and exhibited the least coefficient of variation (14.7%). D.b.h. increment was low, averaging 1.05 (95% confidence limits: 0.57–2.13) mm year−1 and was attributed to predominance of understorey species in the sampled plot. Overall, annual mortality was also low, averaging 2.73% per year. The three adult stature groups differed significantly in d.b.h. increment and WWC but not in tree mortality and WD. Across species and especially more so when phylogenetic effect is minimized, WD was negatively related to tree mortality and d.b.h. increment, while a positive trend was observed between d.b.h. increment and tree mortality. A negative trend was also detected between maximum plant height and WWC, which was interpreted as a consequence of increased evaporative demand and use of xylem stored water by taller trees in order to compensate for hydraulic limitations to water transport induced by frictional resistance. No doubt, the traits chosen may vary spatially, but the consistent interspecific patterns observed in this study among coexisting species of differing adult stature reflect ‘vertical’ niche differentiation and may help to explain population regulation in a multispecies ecosystem like tropical rainforest.  相似文献   

9.
Aim Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness–productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location We analysed 231 plots ranging from 34.0° to 48.3° N latitude and from 75.0° to 124.2° W longitude in the United States. Methods We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light‐blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control.  相似文献   

10.
Questions : How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location : Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods : Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non‐parametric analyses were used to analyse trends with time and differences among structural components and site types. Results : Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4–8 m). Few significant differences were found among site types. Conclusions : During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification.  相似文献   

11.
The reproductive phenology of 60 understorey species was monitored at monthly intervals for 20 months in a medium elevation wet evergreen forest in the Southern Western Ghats. The life forms monitored were herbs (including terrestrial orchids), shrubs and small trees. Flowering and fruiting were non‐uniform with a dry season flowering peak and wet season fruiting peak. Flowering in the understorey correlated negatively with rainfall. No significant correlation was detected for fruiting. Life forms had flowering and fruiting peaks at different times of the year.  相似文献   

12.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

13.
We studied home ranges, habitat use and survival of radio‐tagged Nahan’s Francolin in Budongo Forest Reserve, Uganda during July 1998–December 1999. We studied Nahan’s Francolin in an unlogged nature reserve, in a compartment logged in 1947–1952 and in a compartment logged twice, in 1963–1964 and 1996–1997. Mean home range was 14.22 ± 1.35 ha (n = 17). The home range was significantly larger in the nature reserve than in the recently logged compartment. Birds spent more time during the day in areas with high understorey vegetation density but preferred to roost and nest between buttresses of large trees. Understorey vegetation density and canopy openness were significantly greater in the logged forest than in the nature reserve. Annual survival of adult Nahan’s Francolins was 20.09 ± 7.33% (n = 23). Our results suggest that the maintenance of large trees and areas with high understorey vegetation density are both important for Nahan’s Francolin.  相似文献   

14.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

15.
Question: Do tree species, with different litter qualities, affect the within‐forest distribution of forest understorey species on intermediate to base‐rich soils? Since habitat loss and fragmentation have caused ancient forest species to decline, those species are the main focus of this study. Location: Three ancient forests, along a soil gradient from acidification‐sensitive to base‐rich, were studied: Limbrichterbosch and Savelsbos in The Netherlands and Holtkrat in Denmark. Methods: Canopy and soil surveys along transects generated data for Redundancy Analysis on tree – humus relationships. We analysed the distribution of forest plant species with Canonical Correspondence Analysis. The explanatory factors were soil characteristics (pH, organic matter, loam content and thickness of the humus layers), external crown projection, ground water and canopy data. We further analysed the relationship between forest species and humus characteristics with Spearman correlations. Results: Tree species have a significant impact on humus characteristics through the nature of their litter. Humus characteristics significantly explain the distribution of forest understorey species. The pH of the first 25 cm mineral soil and the thickness of the F‐ (fermentation) layer are the primary factors affecting the distribution of ancient forest species. Conclusion: This study indicates that the species composition of the forest canopy affects the distribution of forest understorey species. Ancient forest species are more abundant and frequent underneath trees with base‐rich litter. On acidification‐sensitive soils these relationships were stronger than on more base‐rich, loamy soils.  相似文献   

16.
Tree species composition (diameter at breast height (dbh) 10 cm) was studied in primary, selectively logged and heavily burnt forests in East Kalimantan, Indonesia. The number of trees, tree species, and the Fishers's- diversity index were determined for the first 15 years (burnt forest) and 25 years (selectively logged forest) after disturbance. Additionally the population structure of six common and typical Macaranga pioneer tree species was compared through time between selectively logged, burnt and primary forest. Both selectively logged and burnt forest showed a significant reduction in number of trees and tree species per surface area directly after disturbance. Fire especially affected dominant tree species, while for selective logging the opposite was observed. In selectively logged forest the number of trees, tree species and the Fishers's- index reached pre-disturbance levels within c. 15 years. For burnt forest, only the number of trees recovered to pre-disturbance levels. The number of tree species stayed constant after disturbance, while the Fishers's- index decreased. The six studied Macaranga pioneer tree species seedlings were present in all forest types. Their density seems to be unrelated to light levels in the forest understorey but strongly related to the number of mature parent trees. Their sapling densities were strongly related to light levels in the forest understorey. The studied Macaranga species formed an important part of both under- and over-storey in burnt forest 15 years after disturbance, while they were almost absent in the understorey and only moderately common in the overstorey of selectively logged forest.  相似文献   

17.
Abstract. We studied the characteristics of understorey regeneration on two sites with different fire history in a mature Pinus sylvestris forest in eastern Finland. The study area was a 4‐ha plot, which was divided into two parts based on fire history analysis. In one part the last fire event was a stand‐replacing fire in the early 19th century, after which the whole stand regenerated, while the other part of the study plot was subsequently burnt by a surface fire in 1906. Understorey P. sylvestris individuals were much more abundant in the area of the 1906 burn compared to the old burn. In both areas the size frequency distribution of living trees was bimodal, with frequency peaks at the < 5 cm and 30–150 cm height classes. In the old burn small understorey trees were mainly associated with microsites created by treefall disturbances while in the 1906 burn most small understorey trees occurred on vegetation‐covered microsites. This indicates that with increasing time since last fire establishment of new understorey trees becomes more restricted by the availability of microsites created by treefall disturbances. In both areas the proportion of vigorous small understorey trees was highest on decayed wood. In the older burn uprooted pits and mounds also had a significant proportion of healthy small understorey trees, while the majority of trees classified as seriously weakened or dying were growing on microhabitats characterized by undisturbed vegetation. Ripley's K‐function analyses showed that spatial distribution of understorey trees was clustered in both areas in all microsite types and clustering at small scales was most pronounced in understorey trees growing in uprooted spots or in association with decayed wood. The bivariate analysis showed a significant repulsion effect between large trees and understorey trees at intermediate spatial scales, indicating that competition had an effect on understorey tree distribution and this effect was more pronounced in the younger burn. The analysis suggests that in Pinus sylvestris forests the abundance, quality and spatial pattern of understorey tree population may vary considerably as a function of disturbance history.  相似文献   

18.
  • One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features – overstorey or understorey vegetation – are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering.
  • The study was conducted in the ‘Zielone Bagna’ nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied.
  • Understorey vegetation traits affected tree seedling density (up to 0.5‐m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings.
  • Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas.
  相似文献   

19.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

20.
Dense herbaceous understorey layers can impact tree regeneration and thereby affect forest succession. However, the implications of this interaction on large spatial and temporal scales are not well understood. To analyse the role of overstorey–understorey interactions for forest dynamics, we implemented an understorey layer (composed of the plant functional types grasses, forbs, ferns, herbs and shrubs) in the forest landscape model LandClim, focusing on competition for light as the main mode of interaction. The model was used to simulate post-disturbance dynamics over an elevational gradient of 560–2800 m a.s.l. in Central Europe. Simulation results showed strong impacts of the herbaceous understorey on tree regeneration within the first decades, but generally little effect on late-successional forests, i.e. not providing any evidence for ‘arrested’ succession. The results also demonstrated varying overstorey–understorey interactions across the landscape: strongest effects were found at low to mid elevations of the study landscapes, where tree establishment was substantially delayed. At high elevations, tree growth and establishment were more limited by low temperatures, and the effect of light competition from the understorey was negligible. Although the inclusion of large windthrow disturbances increased the biomass of herbaceous understorey across the landscape, this had only a small impact on the overstorey due to the presence of advance regeneration of trees. Overall, our results demonstrate that the herbaceous understorey can have a significant impact for forest landscape dynamics through light competition, and that non-woody plants should not be neglected in forest modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号