首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globulins (GLB) are storage proteins that accumulate to high levels during zygotic embryo development of Zea mays L. We visualized the distribution of GLB during zygotic embryo development by immunolabelling of polyethylene glycol sections with a GLB-specific antiserum and a fluorescent secondary antibody. In sections of embryos at 10 days after pollimation (DAP), GLB were detected in the scutellar node only. Sections of embryos of 17 DAP showed, besides the presence of GLB in the scutellar node, the presence of a low amount of GLB in the coleoptile and the leaf primordia. In 30-DAP embryos GLB were localized in the root, the coleorhiza, the leaf primordia, the coleoptile and in all cells of the scutellum with the exception of the epidermis and the pro-vascular tissues. The subcellular location of GLB was visualized by immunolabelling of ultrathin sections with anti-GLB and a gold-conjugated secondary antibody. Scutellum cells and root cortex cells of 30-DAP embryos were packed with protein storage vacuoles (PSV), which differed in electron density. GLB were either evenly distributed throughout the PSV or were localized in electron-dense inclusions within the PSV. SDS-PAGE and immunoblot analysis of total protein extracts indicated the presence of a low amount of the GLB1 processing intermediate proGLB1' in globular as well as mature somatic embryos. After maturation on an ABA-containing medium, somatic embryos showed the additional presence of the next GLB1 processing intermediate GLB1'. By immuno-electron microscopy it was possible to localize GLB in globular deposits in PSV in scutellum cells of these somatic embryos.  相似文献   

2.
The ultrastructure, morphology, and histology of somatic embryogenesis in pearl millet (Pennisetum glaucum) were examined using light and electron microscopic techniques. Somatic embryogenesis was initiated from zygotic embryo explants cultured 8 d after pollination. Formation of a ridge of tissue began 3–4 d after culture (DAC) by divisions in the epidermal and subepidermal cells of the scutellum. Ridge formation was accompanied by a decrease in vacuoles, lipid bodies, and cell size, and an increase in endoplasmic reticulum (ER). Proembryonic cell masses (proembryoids) formed from the scutellar ridge by 10 DAC. Proembryoid cells had abundant Golgi bodies and ER while the amounts of lipids and starch varied. Somatic embryos developed from the proembryonic masses 13 DAC and by 21 DAC had all the parts of mature zygotic embryos. Although shoot and root primordia of somatic embryos were always less differentiated than those of zygotic embryos, scutellar cells of somatic and zygotic embryos had similar amounts of lipids, vacuoles, and starch. Somatic scutellar epidermal cells were more vacuolated than their zygotic counterparts. In contrast, somatic scutellar nodal cells were smaller and not as vacuolated as in zygotic embryos. Somatic embryogenesis was characterized by three phases of cell development: first, scutellar cell dedifferentiation with a reduction in lipids and cell and vacuole size; second, proembryoid formation with high levels of ER; and third, the development of somatic embryos that were functionally and morphologically similar to zygotic embryos.  相似文献   

3.
An embryogenic suspension culture of Zea mays, genotype 4C1, was obtained from friable callus that was cultured on solid medium and had been obtained from zygotic embryos. The suspension contained non-dividing elongated cells, clusters of dividing isodiametric cells, and globular, ovoid, and polar stages of somatic embryos. The single somatic embryos were blocked in shoot meristem formation: when transferred to regeneration medium they developed a root and, at the shoot side, a green cap with meristematic cells, but a scutellum and leaf primordia were not formed. In medium containing 2,4-dichlorophenoxy acetic acid, somatic embryos formed embryogenic callus aggregates, consisting of globular stage somatic embryos attached to each other via undifferentiated callus cells. These somatic embryos developed into mature embryos with the zygotic histological characteristics, such as scutellum and leaf primordia, in maturation medium, and then regenerated into plants in regeneration medium. By omitting the maturation phase, regeneration occurred via organogenesis. Polyembryos, i. e. embryos attached to each other without callus tissue in between, behaved as single somatic embryos. It is concluded that the attached callus tissue provides a factor that stimulates scutellum and leaf primordia formation.Abbreviations CMM callus maintenance medium - 2,4D 2,4-dichlorophenoxy acetic acid - PCV packed cell volume - MS Murashige and Skoog medium  相似文献   

4.
Zhang S  Wong L  Meng L  Lemaux PG 《Planta》2002,215(2):191-194
Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.  相似文献   

5.
The immature zygotic embryos of reciprocal maize hybrids (CHI-31 x GF1 and CHI-31 × GE2) were used as the initial material for induction of somatic embryogenesis in vitro. Histological analysis of somatic embryogenesis revealed high developmental variability. The arising formations were classified into 5 groups: A) somatic embryos phenotypically similar to zygotic embryos, B) polyembryos, C) formations with radicle but without meristematic plumule, D) formations with radicle without differentiated plumule, and E) formations with plumule without radicle. The formatioms A and B regenerated directly into plants. Plant regeneration from formations E required preculture on the rooting medium. Formations C and D failed to develope into plants possibly because of early loss of meristematic cell character during the embryo axis differentiation. The reverse sequence of radicle and plumule differentiation in somatic embryos in comparison with zygotic ones was noted. The epigenetic character of the scutellum, coleoptile, coleorhiza and leaves primordia development was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.) were quantified using morphometric techniques. The total area per cell profile and the cell volume percentage of the whole cell, endoplasmic reticulum (ER), Golgi bodies, mitochondria, nuclei, lipids, plastids, starch grains and vacuoles were measured and comparisons made between three zygotic and three somatic embryo developmental stages. All measurements were taken from scutellar or scutellar-derived cells. Zygotic embryogenesis was characterized by increases in cell size, lipids, plastids, starch, Golgi bodies, mitochondria and ER. Somatic embryogenesis was characterized by two phases of cell development: (1) the dedifferentiation of scutellar cells involving a reduction in cell and vacuole size and an increase in cell activity during somatic proembryoid formation and (2) the development of somatic embryos in which most cell organelle quantities returned to values found in late coleoptile or mature predesiccation zygotic stages. In summary, although their developmental pathways differed, the scutella of somatic embryos displayed cellular variations which were within the ranges observed for later stages of zygotic embryogenesis.  相似文献   

7.
Embryo development in Coix lacryma-jobi is classified into the following stages: proembryo before club-shaped, club-shaped, coleoptilar, I-leafed, 2-1eared, 3-1eared, 4-1eared, 5-leafed and 6-leafed (mature embryo). The 3-, 4-, 5-leafed embryos have 1, 2 and 3 adventitious roots (seminal roots) respectively, and the matrue also has 3. These seminal roots are arranged in a longitudinal row parallelling with the radicle. The storage reserves first deposit in the scutellar cells. 9 days after anthesis (l-leafed stage), the starch grains are accumulated in cells of scutellum, coleoptile and mesocotyle. When the embryo matures, starch grains are deposited throughout its cells. The increase in size and amount of starch grains correlates with the initiation and growth order of the embryonic organs. But the amount in the scutellar cells decreases from later to mature stage. 10 days after anthesis (2-leafed stage), protein bodies containing crystals, of protein and phytin are present in the scutellar cells. They subsequently become larger and abundant druses. At the same time some protein bodies without crystals are also formed. Later, the protein bodies containing crystals disappear, while those without crystals increase until the embryo matures. 13 days after anthesis (3- leafed stage) protein bodlies are formed in the upper coleoptile cells. Protein bodies are rich in the cells of mature embryo, but the earlier the organ of embryo occurs, the more and the larger protein bodies it contains. 10 days after anthesis, lipid bodies appear in the scutellar cells and increase in size and quantity rapidly as the embryo develops. The correlation of the length of caryopsis and scutellum with embryo development is also observed.  相似文献   

8.
In monocots, the zygotic embryo is protected and nourished by an endosperm. In the present study starch deposition and amylase accumulation was noticed during somatic embryogenesis in stem callus of a bamboo, Dendrocalamus hamiltonii. SEM studies revealed that starch grains were clearly visible in the scutellum during the maturation stage of the somatic embryo. As the somatic embryo developed further, the scutellum got reduced with corresponding increase in amylase. The amylase activity was tested periodically at different developmental stages of embryos. The role of scutellum in somatic embryos for starch deposition and amylase accumulation is discussed.  相似文献   

9.
薏苡胚发育及贮藏营养物质积累的研究   总被引:4,自引:0,他引:4  
薏苡(Coix lacrym a-jobi)胚发育分下列各期:棒形胚前的原胚期、棒形胚期、胚芽鞘期、1叶期、2 叶期、3叶期、4 叶期、5 叶期及6叶期成熟胚。3 叶期胚具1 条不定根(种子根),4 叶期具2 条,5 叶期及成熟胚期具3 条。不定根与胚根排成1 纵行。营养物质最先在盾片细胞中积累。开花后9 天的1 叶期胚,在盾片、胚芽鞘及胚轴细胞中积累了淀粉,以后遍及成熟胚的各部分。淀粉粒含量与器官发生及生长顺序成正相关,但发育后期,盾片细胞内的淀粉粒含量下降。开花后10 天,盾片细胞中形成含晶体的蛋白质体,晶体含蛋白质及植酸钙镁。以后,这种蛋白质体增多、增大。同时,又形成不含晶体的蛋白质体。一定时期,含晶体的蛋白质体消失,不含晶体的蛋白质体增多,直到胚成熟。开花后13 天,胚芽鞘上部细胞形成蛋白质体。以后遍及成熟胚的各部分,器官发生越早,所含蛋白质体越多、越大。开花后10 天,盾片细胞中产生了脂体,成熟胚的盾片细胞,含有大量的脂体。还观察了胚发育各期与颖果及盾片长度的对应关系  相似文献   

10.
11.
Using scanning electron microscopy and semi-thin plastic sections, the pattern of development of the rice ( Oryza sativa L. ) embryo from 2 days after pollination (DAP) to maturity was followed. ( 1 ) At 2 DAP, the young embryo was observed to consist of an embryo proper, a hypoblast and a suspensor. The trum-pet-shaped hypoblast was a transitional region situated between the suspensor and the embryo proper. To label the hypoblast as suspensor is incorrect. During this time, dorsiventrality was established, but a radicle was not yet differentiated. Therefore it is still referred to as a proembryo. (2) 3 ~ 5 DAP, the embryo underwent definite morphological and anatomical changes. In the young embryo at 3 DAP the scutellum and colcoptile appeared simultaneously directly from the proembryo. The coleoptile did not originate from the scutellmn. During these foremost 3 days, the coleoptile primordium underwent a special kind of morphological change and formed a young coleeptile having the shape of an inverted hollow cone. This process revealed the true mechanism of c61eeptile formation. Anatomical observation indicated that the embryo at 3 DAP began to differentiate procambium, ground meristem and root cap. At 4 DAP a dome-like growth cone and protoderm of radicle appeared. Then the shoot-root axis became established. At 5 DAP the plumule, hypocotyl and radicle were formed. (3) It was shown that the embryo of rice actually has two cotyledons: the scutellum (a part of the embryonic envelope) and the coleeptile (The scutellum being the lateral cotyledon, a part of outside cotyledon, and the coleoptile the apical cotyledon--the coleoptile may be considered to be a modified form of a cotyledon). This kind of structural arrangemem can be referred to as dimorphic cotyledon.  相似文献   

12.
 Single mesophyll cells in leaf explants of Dactylis glomerata L. (Dactylis) that were competent to form somatic embryos directly or through callus were identified by semi-automatic cell tracking. These competent cells were a subpopulation of small, isodiametric, cytoplasm-rich cells located close to the vascular bundles. Using whole mount in situ hybridization, we showed that a similar subpopulation of cells expressed the Somatic Embryogenesis Receptor-like Kinase (SERK) gene during the induction of embryogenic cell formation. In both leaf explants and suspension cultures, a transient pattern of SERK gene expression was found during early embryo development, up to the globular stage. In later embryo stages, SERK mRNA was present in the shoot apical meristem, scutellum, coleoptile and coleorhiza. Received: 14 May 1999 / Revision received: 27 August 1999 / Accepted: 8 September 1999  相似文献   

13.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

14.
Summary Histologic examination of shoot-tip explants, 1 wk after culture initiation on Murashige and Skoog medium with 2.5 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.05 mg/liter kinetin, reveals active meristematic centers inside cultured tissue. Clusters of cells in these meristematic centers exhibit remarkable resemblance to the initial three divisions in the zygotic embryo. Several such meristematic groups of cells are observed in the cultured explant at this stage. Embryogenesis is obviously initiated very early in this tissue in the presence of 2,4-D. A well-defined, white globular embryogenic callus develops in culture in about 4 wk, and it consists of clusters of embryoids with large cells characterized by thick cell walls, numerous lipoidal vesicles, and localized areas of carbohydrate storage. These cells resemble the scutellar tissue of the embryo. However, there are cells within this tissue that themselves appear embryogenic. They undergo cell division giving rise to small clusters of cells. As long as 2,4-D is present in the medium, the cells apparently retain the capacity to proliferate and to produce more cells capable of embryogenesis. Embryogenesis seems to occur via two processes, initiation of somatic embryos early in culture and secondary embryogensis from the scutellar tissue that forms in vitro.  相似文献   

15.
16.
The somatic embryogenesis was established from mature dehulled seeds. The histological research showed that embryogenic calli were initiated first from absorbed cells of scutellum of mature seed. And then the embryoids derived from the surface of embryogenic callus. Having been the same structure like a zygotic embryo of rice, the embryoids possessed the major parts of scutellum, coleoptile and coleorhiza. In an embryoid, several developmental stages of pro-embryoid, including single embryogenic cells, two, four and multiple cell stage pro-embryeids and some abnormal embryoids were observed. It could be concluded from this experiment that the embryoid from somatic cell culture in Indica rice possessed an original form of a plant in structure like a zygotic did and derived from a single cell.  相似文献   

17.
Summary The developmental histology of somatic embryo (=embryoid) formation in cultured immature embryos of hybrid maize cultivars (Zea mays L.) is described. Embryos cultured on media containing 2% sucrose formed distinct globular embryoids. These embryoids arose either directly by divisions confined to the epidermal and the subepidermal cells at the coleorhizal end of the scutellum or from a soft and friable embryogenic callus produced by them. On media containing 6% sucrose divisions were initiated in the cells adjacent to the procambium of the cultured embryos. Subsequently, zones of meristematic cells also were observed in the region of the node and in the basal portion of the scutellum. Mature, well organized somatic embryos as well as a compact nodular type of embryogenic callus were produced as a result of localized meristematic activity along the tip of the scutellum toward the coleorhiza. Some embryos formed only the compact type of callus, and shoot primordia were organized later in the surface layers of this callus.Abbreviations CH casein hydrolysate - MS Murashige and Skoog's nutrient medium - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

18.
To better understand micromorphological and structural changes, histological sections provide additional insight into cellular process and developmental pathways occurring in oat somatic embryogenesis. Environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM) were also used to follow the ultrastructural modifications during this system. Histological observations allowed following the events leading to the development of mature somatic embryos. The scheme includes the following steps: cell reactivation, the first organized cell division in diads, triads, tetrads as well as octant stages, the observation of an extracellular matrix (ECM) as a fibrillar material that bounded the surface of individualized proembryos. The transition from proembryo stage to an early globular somatic embryo was noted, where the embryogenic cortex is surrounded by the protoderm. The late globular stage was marked by bipolarity. The early and late transitional stages, the coleoptilar, mature and germinated stages were also described. The ESEM allowed us to follow some rearrangements, related to the morphology and surfaces involved in somatic embryos development. These events are proembryo formation, transition from proembryo to globular stage, marked by protoderm formation, scutellum and coleoptile development and finally somatic embryos germination. The TEM showed that embryogenic cells were very rich in organelles; mitochondria, rough endoplasmic reticulum, Golgi apparatus and ribosomes. Cells of proembryos, globular and late somatic embryos showed more vacuoles and differentiated organelles. The ECM was also detected by TEM as fibrillar material coating the cell walls. These results on structural and ultrastructural changes provided new insights and findings on oat somatic embryogenesis.  相似文献   

19.
The ultrastructure, morphology, and histology of zygotic embryogenesis in pearl millet (Pennisetum glaucum) were examined using light and electron microscopic techniques. Embryogenesis was initially characterized by the presence of a vacuolated egg cell and zygote. The increased presence of Golgi bodies in the zygote suggested it was metabolically more active than the egg cell. The first zygotic division resulted in a densely cytoplasmic apical cell and a highly vacuolated basal cell. The club-shaped proembryo displayed a large amount of endoplasmic reticulum (ER) and ribosomes, very few lipids, and a continuous gradient of vacuoles from the highly vacuolated basal suspensor cells to the densely cytoplasmic apical cells. The embryo had well-defined parts by 8 days after pollination, including shoot and root meristems, coleoptile, scutellum, provascular system, and the first leaf primordium. Large increases in ER, lipids, starch, and vacuoles occurred in the scutellum during the maturation of the embryo, except in the provascular cells. Throughout zygotic embryogenesis, embryo cells were connected by plasmodesmata except where intercellular spaces occurred. Ultrastructural, morphological, and histological observations of zygotic embryogenesis in pearl millet are in agreement with previous reports for other grass species.  相似文献   

20.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号