首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of pollen wall exine is preceded by the development of several transient layers of extracellular materials deposited on the surface of developing pollen grains. One such layer is primexine (PE), a thin, ephemeral structure that is present only for a short period of time and is difficult to visualize and study. Recent genetic studies suggested that PE is a key factor in the formation of exine, making it critical to understand its composition and the dynamics of its formation. In this study, we used high-pressure frozen/freeze-substituted samples of developing Arabidopsis (Arabidopsis thaliana) pollen for a detailed transmission electron microscopy analysis of the PE ultrastructure throughout the tetrad stage of pollen development. We also analyzed anthers from wild-type Arabidopsis and three mutants defective in PE formation by immunofluorescence, carefully tracing several carbohydrate epitopes in PE and nearby anther tissues during the tetrad and the early free-microspore stages. Our analyses revealed likely sites where these carbohydrates are produced and showed that the distribution of these carbohydrates in PE changes significantly during the tetrad stage. We also identified tools for staging tetrads and demonstrate that components of PE undergo changes resembling phase separation. Our results indicate that PE behaves like a much more dynamic structure than has been previously appreciated and clearly show that Arabidopsis PE creates a scaffolding pattern for formation of reticulate exine.

Transmission electron microscopy and immunofluorescence analyses of Arabidopsis primexine reveal dynamic changes in its structure and composition throughout the tetrad stage of pollen development.  相似文献   

2.
Guan YF  Huang XY  Zhu J  Gao JF  Zhang HX  Yang ZN 《Plant physiology》2008,147(2):852-863
During microsporogenesis, the microsporocyte (or microspore) plasma membrane plays multiple roles in pollen wall development, including callose secretion, primexine deposition, and exine pattern determination. However, plasma membrane proteins that participate in these processes are still not well known. Here, we report that a new gene, RUPTURED POLLEN GRAIN1 (RPG1), encodes a plasma membrane protein and is required for exine pattern formation of microspores in Arabidopsis (Arabidopsis thaliana). The rpg1 mutant exhibits severely reduced male fertility with an otherwise normal phenotype, which is largely due to the postmeiotic abortion of microspores. Scanning electron microscopy examination showed that exine pattern formation in the mutant is impaired, as sporopollenin is randomly deposited on the pollen surface. Transmission electron microscopy examination further revealed that the primexine formation of mutant microspores is aberrant at the tetrad stage, which leads to defective sporopollenin deposition on microspores and the locule wall. In addition, microspore rupture and cytoplasmic leakage were evident in the rpg1 mutant, which indicates impaired cell integrity of the mutant microspores. RPG1 encodes an MtN3/saliva family protein that is integral to the plasma membrane. In situ hybridization analysis revealed that RPG1 is strongly expressed in microsporocyte (or microspores) and tapetum during male meiosis. The possible role of RPG1 in microsporogenesis is discussed.  相似文献   

3.
Arabidopsis Ruptured Pollen Grain-1 (RPG1/Sweet8) is a member of the MtN3/saliva protein family that functions as a sugar transporter. The rpg1 mutant shows defective exine pattern formation. In this study, transmission electron microscopy (TEM) observations showed that much less primexine was deposited in rpg1 tetrads. Furthermore, microspore membrane undulation was abnormal, and sporopollenin accumulation was also defective. This suggests that a reduced primexine deposition in rpg1 leads to abnormal membrane undulation that affects exine pattern formation. Chemical staining revealed thinning of the callose wall of rpg1, as well as significantly reduced expression of Callose synthase-5 (CalS5) in rpg1. The fertility of the rpg1 mutant could be partly restored at late reproductive stages, potentially complemented in part by RPG2, another member of the MtN3/saliva family, which is expressed in the anther during microsporogenesis. The double mutant, rpg1rpg2, was almost sterile and was not restored during late reproduction. These results suggest that RPG1 and RPG2 are involved in primexine deposition and therefore pollen wall pattern formation.  相似文献   

4.
To identify factors that are required for proper pollen wall formation, we have characterized the T-DNA-tagged, dex1 mutation of Arabidopsis, which results in defective pollen wall pattern formation. This study reports the isolation and molecular characterization of DEX1 and morphological and ultrastructural analyses of dex1 plants. DEX1 encodes a novel plant protein that is predicted to be membrane associated and contains several potential calcium-binding domains. Pollen wall development in dex1 plants parallels that of wild-type plants until the early tetrad stage. In dex1 plants, primexine deposition is delayed and significantly reduced. The normal rippling of the plasma membrane and production of spacers observed in wild-type plants is also absent in the mutant. Sporopollenin is produced and randomly deposited on the plasma membrane in dex1 plants. However, it does not appear to be anchored to the microspore and forms large aggregates on the developing microspore and the locule walls. Based on the structure of DEX1 and the phenotype of dex1 plants, several potential roles for the protein are proposed.  相似文献   

5.
Summary In order to identify factors necessary for the establishment of the reticulate pollen wall pattern, we have characterized a T-DNA tagged mutant ofArabidopsis thaliana that is defective in pattern formation. This study reports the results of an ultrastructural comparison of pollen wall formation in the mutant to wall development in wild-type plants. Pollen wall development in the mutant parallels that of wild-type until the early tetrad stage. At this point in wild-type plants, the microspore plasma membrane assumes a regular pattern of ridges and valleys. Initial sporopollenin deposition occurs on the ridges marking the beginning of probacula formation. In contrast, the plasma membrane in the mutant appears irregular with flattened protuberances and rare invaginations. As a result, the wild-type regular pattern of ridges and valleys is not formed. Sporopollenin is randomly deposited on the plasma membrane and aggregates on the locule wall; it is not anchored to the membrane. Our finding that the mutation blocks the normal invagination of the plasma membrane and disrupts the proper deposition of sporopollenin during wall formation suggests that the mutation could be in a gene responsible for pattern formation. These results also provide direct evidence that the plasma membrane plays a critical role in the establishment of the pollen wall pattern.  相似文献   

6.
A male-sterile mutant of Arabidopsis thaliana was isolated by T-DNA tagging screening. Using transmission electron microscopy analysis, we revealed that the microspores of this mutant did not have normal thick primexine on the microspore at the tetrad stage. Instead, a moderately electron-dense layer formed around the microspores. Although microspores without normal primexine failed to form a proper reticulate exine pattern at later stages, sporopollenin was deposited and an exine-like hackly structure was observed on the microspores during the microspore stage. Thus, this mutant was named hackly microspore (hkm). It is speculated that the moderately electron-dense layer was primexine, which partially played its role in sporopollenin deposition onto the microspore. Cytological analysis revealed that the tapetum of the hkm mutant was significantly vacuolated, and that vacuolated tapetal cells crushed the microspores, resulting in the absence of pollen grains within the anther at anthesis. Single nucleotide polymorphism analysis demonstrated that the hkm mutation exists within the MS1 gene, which has been reportedly expressed within the tapetum. Our results suggest that the critical process of primexine formation is under sporophytic control .  相似文献   

7.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

8.
Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.

Endosomal sorting complex required for transport proteins ISTL1 and LIP5 are required for exocytosis of both plasma membrane and secreted proteins in tapetal cells during microspore formation.  相似文献   

9.
Nexine and intine development in Silene alba (Caryophyllaceae) was investigated by electron microscopy and enzyme cytochemistry. Nexine-2 forms by deposition of sporopollenin along unit membrane lamellae closely associated with the microspore plasma membrane in the late tetrad stage. After the callose wall dissolves, electron density increases along the tangentially oriented fibers of the proximal primexine, forming nexine-1. When the exine is essentially complete, the intine begins to develop. In the nearly mature microspore, acid phosphatase activity appears in the peripheral cytoplasm just prior to its extrusion into the intine of the mature pollen grain.  相似文献   

10.
The processes involved in initiating the primexine were investigated during development of tetrads of microspores in Brassica campestris anthers using rapid freeze-substitution technology. The first event is the appearance of the primexine matrix. The second event is convolution of the microspore plasma membrane, followed by insertion of an electron opaque spacer into the plasma membrane crypts. A convoluted microspore plasma membrane is only recorded in those species where the final exine pattern is reticulate, comprising foot layer, bacula, and tectum. Our hypothesis is that the spacers demarcate the future interbacular cavities of the exine, so that the membrane peaks are the sites for probacula formation.  相似文献   

11.
Summary The position of the callose wall is related to the position of the primexine matrix that forms around the peripheral tetrads during microspore development of the compound unit, the pollinium. We report a combined freeze-fracture and freeze-substitution study of the events associated with early exine development. Stage one of exine development is deposition of protosporopollenin that is probably synthesised by the microspore and secreted to the primexine matrix where it is polymerised. Enzymes for the polymerisation of the protosporopollenin may be synthesised by the microspores and then transported, via the endoplasmic reticulum, to the plasma membrane. Stage two of exine development follows callose dissolution and deposition of tapetally derived sporopollenin. Hence exine form and exine deposition inDendrobium appear to be the result of intimate cooperation between the microspore, the plasma membrane, the callose and the tapetum.  相似文献   

12.
Exine, the outermost architecture of pollen walls, protects male gametes from the environment by virtue of its chemical and physical stability. Although much effort has been devoted to revealing the mechanism of exine construction, still little is known about it. To identify the genes involved in exine formation, we screened for Arabidopsis mutants with pollen grains exhibiting abnormal exine structure using scanning electron microscopy. We isolated 12 mutants, kaonashi1 (kns1) to kns12, and classified them into four types. The type 1 mutants showed a collapsed exine structure resembling a mutant of the callose synthase gene, suggesting that the type 1 genes are involved in callose wall synthesis. The type 2 mutant showed remarkably thin exine structure, presumably due to defective primexine thickening. The type 3 mutants showed defective tectum formation, and thus type 3 genes are required for primordial tectum formation or biosynthesis and deposition of sporopollenin. The type 4 mutants showed densely distributed baculae, suggesting type 4 genes determine the position of probacula formation. All identified kns mutants were recessive, suggesting that these KNS genes are expressed in sporophytic cells. Unlike previously known exine-defective mutants, most of the kns mutants showed normal fertility. Map-based cloning revealed that KNS2, one of the type 4 genes, encodes sucrose phosphate synthase. This enzyme might be required for synthesis of primexine or callose wall, which are both important for probacula positioning. Analysis of kns mutants will provide new knowledge to help understand the mechanism of biosynthesis of exine components and the construction of exine architecture.  相似文献   

13.
In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression.In angiosperms, the pollen wall is the most complex plant cell wall. It consists of the inner wall, the intine, and the outer wall, the exine. The exine is further divided into sexine and nexine layers. The sculptured sexine includes three major parts: baculum, tectum, and tryphine (Heslop-Harrison, 1971; Piffanelli et al., 1998; Ariizumi and Toriyama, 2011; Fig. 1A). Production of a functional pollen wall requires the precise spatial and temporal cooperation of gametophytic and sporophytic tissues and metabolic events (Blackmore et al., 2007). The intine layer is controlled gametophytically, while the exine is regulated sporophytically. The sporophytic tapetum cells provide material for pollen wall formation, while primexine determines pollen wall patterning (Heslop-Harrison, 1968).Open in a separate windowFigure 1.Schematic representation of the pollen wall and primexine development. A, The innermost layer adjacent to the plasma membrane is the intine. The bacula (Ba), tectum (Te), and tryphine (T) make up the sexine layer. The nexine is located between the intine and the sexine layers. The exine includes the nexine and sexine layers. B, Primexine (Pr) appears between callose (Cl) and plasma membrane (Pm) at the early tetrad stage (left panel). Subsequently, the plasma membrane becomes undulated (middle panel) and sporopollenin deposits on the peak of the undulated plasma membrane to form bacula and tectum (right panel).After meiosis, four microspores were encased in callose to form a tetrad. Subsequently, the primexine develops between the callose layer and the microspore membrane (Fig. 1B), and the microspore plasma membrane becomes undulated (Fig. 1B; Fitzgerald and Knox, 1995; Southworth and Jernstedt, 1995). Sporopollenin precursors then accumulate on the peak of the undulated microspore membrane to form the bacula and tectum (Fig. 1B; Fitzgerald and Knox, 1995). After callose degradation, individual microspores are released from the tetrad, and the bacula and tectum continue to grow into exine with further sporopollenin deposition (Fitzgerald and Knox, 1995; Blackmore et al., 2007).The callose has been reported to affect primexine deposition and pollen wall pattern formation. The peripheral callose layer, secreted by the microsporocyte, acts as the mold for primexine (Waterkeyn and Bienfait, 1970; Heslop-Harrison, 1971). CALLOSE SYNTHASE5 (CalS5) is the major enzyme responsible for the biosynthesis of the callose peripheral of the tetrad (Dong et al., 2005; Nishikawa et al., 2005). Mutation of Cals5 and abnormal CalS5 pre-mRNA splicing resulted in defective peripheral callose deposition and primexine formation (Dong et al., 2005; Nishikawa et al., 2005; Huang et al., 2013). Besides CalS5, four membrane-associated proteins have also been reported to be involved in primexine formation: DEFECTIVE EXINE FORMATION1 (DEX1; Paxson-Sowders et al., 1997, 2001), NO EXINE FORMATION1 (NEF1; Ariizumi et al., 2004), RUPTURED POLLEN GRAIN1 (RPG1; Guan et al., 2008; Sun et al., 2013), and NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU; Chang et al., 2012). Mutation of DEX1 results in delayed primexine formation (Paxson-Sowders et al., 2001). The primexine in nef1 is coarse compared with the wild type (Ariizumi et al., 2004). The loss-of-function rpg1 shows reduced primexine deposition (Guan et al., 2008; Sun et al., 2013), while the npu mutant does not deposit any primexine (Chang et al., 2012). Recently, it was reported that Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE G1 (CDKG1) associates with the spliceosome to regulate the CalS5 pre-mRNA splicing for pollen wall formation (Huang et al., 2013). Clearly, disrupted primexine deposition leads to aberrant pollen wall patterning and ruptured pollen grains in these mutants.The plant hormone auxin has multiple roles in plant reproductive development (Aloni et al., 2006; Sundberg and Østergaard, 2009). Knocking out the two auxin biosynthesis genes, YUC2 and YUC6, caused an essentially sterile phenotype in Arabidopsis (Cheng et al., 2006). Auxin transport is essential for anther development; defects in auxin flow in anther filaments resulted in abnormal pollen mitosis and pollen development (Feng et al., 2006). Ding et al. (2012) showed that the endoplasmic reticulum-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Evidence for the localization, biosynthesis, and transport of auxin indicates that auxin regulates anther dehiscence, pollen maturation, and filament elongation during late anther development (Cecchetti et al., 2004, 2008). The role of auxin in pollen wall development has not been reported.The auxin signaling pathway requires the auxin response factor (ARF) family proteins (Quint and Gray, 2006; Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008; Vanneste and Friml, 2009). ARF proteins can either activate or repress the expression of target genes by directly binding to auxin response elements (AuxRE; TGTCTC/GAGACA) in the promoters (Ulmasov et al., 1999; Tiwari et al., 2003). The Arabidopsis ARF family contains 23 members. A subgroup in the ARF family, ARF10, ARF16, and ARF17, are targets of miRNA160 (Okushima et al., 2005b; Wang et al., 2005). Plants expressing miR160-resistant ARF17 exhibited pleiotropic developmental defects, including abnormal stamen structure and reduced fertility (Mallory et al., 2005). This indicates a potential role for ARF17 in plant fertility, although the detailed function remains unknown. In addition, ARF17 was also proposed to negatively regulate adventitious root formation (Sorin et al., 2005; Gutierrez et al., 2009), although an ARF17 knockout mutant was not reported and its phenotype is unknown.In this work, we isolated and characterized a loss-of-function mutant of ARF17. Results from cytological observations suggest that ARF17 controls callose biosynthesis and primexine deposition. Consistent with this, the ARF17 protein is highly abundant in microsporocytes and tetrads. Furthermore, we demonstrate that the ARF17 protein is able to bind the promoter region of CalS5. Our results suggest that ARF17 regulates pollen wall pattern formation in Arabidopsis.  相似文献   

14.
The Nelumbonaceae are a small family of aquatic angiosperms comprising Nelumbo nucifera and Nelumbo lutea. Historically, the genus has been considered to be closely related to Nymphaeales, however new systematic work has allied Nelumbo with lower eudicots, particularly Platanus. In recent years, studies of pollen development have contributed greatly to the understanding of phylogenetic relationships, but little has been known about these events in Nelumbo. In this paper, pollen and anther development are morphologically described for the first time in N. lutea. A comprehensive ontogenetic sequence is documented, including the sporogenous tissue, microspore mother cell, tetrad, free spore, and mature pollen grain stages. The deposition of a microspore mother cell coat and callose wall, the co-occurrence of both tetrahedral and tetragonal tetrads, the formation of a primexine in tetrads, and primexine persistence into the late free spore stage are shown. The majority of exine development occurs during the free spore stage with the deposition of a tectate-columellate ectexine, a lamellate endexine, and an unusual granular layer below and intermixed with the endexine lamellae. A two-layered intine forms rapidly during the earliest mature pollen stage. Major events of anther development documented include the degradation of a secretory-type tapetum during the free spore stage and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The majority of mature pollen grains are tricolpate, however less common monosulcate and diaperturate grains also develop. Co-occurring aperture types in Nelumbo have been suggested to be an important transition in angiosperm aperture number. However, aperture variability in Nelumbo may be correlated with the lateness of aperture ontogeny in the genus, which occurs in the early free spore stage. This character, as well as other details of pollen and anther ontogeny in Nelumbo, are compared to those of Nymphaeales and Platanus in an effort to provide additional insight into systematic and phylogenetic relationships. Although Nelumbo is similar to both groups in several characters, the ontogenetic sequence of the genus is different in many ways.  相似文献   

15.
Pollen development in Hibiscus syriacus L. (Malvaceae) was studied with light (LM), scanning (SEM) and transmission (TEM) electron microscopes, with special attention to the formation of extremely long spines of the pollen grains. At the early tetrad stage, probacules are initiated directly on the plasma membrane and grow in coincidence with the height of primexine matrix within a callosic wall. Subsequently, a pretectum appears at the top of the probacules and then a foot layer is formed by accumulation of white line centered lamellations. Before dissolution of the callosic wall, a reticulate patterned pretectum is established around the microspores. There is not, however, any morphological indication on the initiation of the spines during the tetrad period within a callosic wall. It is after dissolution of the callosic wall that the spines of exine begin to form by the apposition of lamellated sheets. The lamellated sheets show a concentric configuration around the developing supratectal spines. The mature pollen grain is spheroidal, polycolporate, 160–170 μm in diameter, with supratectal spines 20–25 μm long. The supratectal spines of Hibiscus pollen are not homologous with the other exinous protrusions which are determined within the callosic wall during tetrad stage.  相似文献   

16.
Pollen exine, mainly composed of sporopollenin, plays important roles during microspore development. It has been reported that Acyl-CoA Synthetase5 (ACOS5) is required for sporopollenin biosynthesis in Arabidopsis. Here we show that ACOS5 is essential for primexine formation during Arabidopsis microspore development. Through genetic screen, we identified a point mutation of ACOS5 allele, acos5-2, showing abnormal microspore development. Its microspores were degenerated and aborted after released from the tetrads. Transmission electron microscopy showed that primexine formation was reduced in acos5-2 mutant as compared to that of the wild-type. Consequently, sporopollenin was aggregated and randomly deposited on the microspores. In situ hybridization indicated that the key regulators of tapetum development, DYT1 and TDF1, are required for the expression of ACOS5 in tapetum. Furthermore, the GUS reporter showed that the 593-bp promoter sequence was sufficient for the expression of ACOS5 in the anther. Our data provide evidence that ACOS5 is required for primexine formation and sporopollenin deposition during microspore development.  相似文献   

17.
The highly variable and species-specific pollen surface patterns are formed by sporopollenin accumulation. The template for sporopollenin deposition and polymerization is the primexine that appears on the tetrad surface, but the mechanism(s) by which primexine guides exine patterning remain elusive. Here, we report that the Poaceae-specific EXINE PATTERN DESIGNER 1 (EPAD1), which encodes a nonspecific lipid transfer protein, is required for primexine integrity and pollen exine patterning in rice (Oryza sativa). Disruption of EPAD1 leads to abnormal exine pattern and complete male sterility, although sporopollenin biosynthesis is unaffected. EPAD1 is specifically expressed in male meiocytes, indicating that reproductive cells exert genetic control over exine patterning. EPAD1 possesses an N-terminal signal peptide and three redundant glycosylphosphatidylinositol (GPI)-anchor sites at its C terminus, segments required for its function and localization to the microspore plasma membrane. In vitro assays indicate that EPAD1 can bind phospholipids. We propose that plasma membrane lipids bound by EPAD1 may be involved in recruiting and arranging regulatory proteins in the primexine to drive correct exine deposition. Our results demonstrate that EPAD1 is a meiocyte-derived determinant that controls primexine patterning in rice, and its orthologs may play a conserved role in the formation of grass-specific exine pattern elements.  相似文献   

18.
This study aimed to elucidate the anther wall development, pollen wall development, and exine structure of Trochodendron aralioides Siebold and Zuccarini, a tree with primitive vessels but long considered to lack vessel elements in its wood. The anther wall is the basic type: epidermis, endothecium layer, three middle layers, and tapetum. The anther tapetum is glandular and cells are uniseriate. Microspore mother cells undergo meiosis with simultaneous cytokinesis to produce tetrahedral tetrads enclosed within a callose wall. Before development of the protectum, primexine is inserted against the callose, and the plasma membrane is invaginated. Then, the probacula are elongated under the protectum and arise basally from the plasma membrane. The foot layer formation is concomitant with callose wall dissolution. The foot layer is thick, and the endexine is thin. The foot layer and the endexine are both continuous. The intine is initially formed in the vacuolated microspore stage. Hollow Ubisch bodies are observed on the inner surface of the tapetum in free microspore stage. Pollen grains are tricolporate and 2-celled at the time of shedding. The numerous anthers of a single flower are at different development stages in both protandrous and protogynous individuals.  相似文献   

19.
Clathrin-mediated membrane trafficking is critical for multiple stages of plant growth and development. One key component of clathrin-mediated trafficking in animals is dynamin, a polymerizing GTPase that plays both regulatory and mechanical roles. Other eukaryotes use various dynamin-related proteins (DRP) in clathrin-mediated trafficking. Plants are unique in the apparent involvement of both a family of classical dynamins (DRP2) and a family of dynamin-related proteins (DRP1) in clathrin-mediated membrane trafficking. Our analysis of drp2 insertional mutants demonstrates that, similar to the DRP1 family, the DRP2 family is essential for Arabidopsis thaliana development. Gametophytes lacking both DRP2A and DRP2B were inviable, arresting prior to the first mitotic division in both male and female gametogenesis. Mutant pollen displayed a variety of defects, including branched or irregular cell plates, altered Golgi morphology and ectopic callose deposition. Ectopic callose deposition was also visible in the pollen-lethal drp1c-1 mutant and appears to be a specific feature of pollen-defective mutants with impaired membrane trafficking. However, drp2ab pollen arrested at earlier stages in development than drp1c-1 pollen and did not accumulate excess plasma membrane or display other gross defects in plasma membrane morphology. Therefore, the DRP2 family, but not DRP1C, is necessary for cell cycle progression during early gametophyte development. This suggests a possible role for DRP2-dependent clathrin-mediated trafficking in the transduction of developmental signals in the gametophyte.  相似文献   

20.
Aouali N  Laporte P  Clément C 《Planta》2001,213(1):71-79
Using the monoclonal antibodies JIM 5 and 7, pectin was immunolocalized and quantitatively assayed in three anther compartments of Lilium hybrida during pollen development. Pectin levels in both the anther wall and the loculus increased following meiosis, were maximal during the early microspore stages and declined during the remainder of pollen ontogenesis. In the microspores/pollen grains, pectin was detectable at low levels during the microspore stages but accumulated significantly during pollen maturation. During early microspore vacuolation, esterified pectin epitopes were detected both in the tapetum cytoplasm and vacuoles. In the anther loculus, the same epitopes were located simultaneously in undulations of the plasma membrane and in the locular fluid. At the end of microspore vacuolation, esterified pectin epitopes were present within the lipids of the pollenkitt, and released in the loculus at pollen mitosis. Unesterified pectin epitopes were hardly detectable in the cytoplasm of the young microspore but were as abundant in the primexine matrix as in the loculus. During pollen maturation, both unesterified and esterified pectin labelling accumulated in the cytoplasm of the vegetative cell, concurrently with starch degradation. In the mature pollen grain, unesterified pectin epitopes were located in the proximal intine whereas esterified pectin epitopes were deposited in the distal intine. These data suggest that during early microspore development, the tapetum secretes pectin, which is transferred to the primexine matrix via the locular fluid. Further, pectin is demonstrated to constitute a significant component of the pollen carbohydrate reserves in the mature grain of Lilium. Received: 3 July 2000 / Accepted: 19 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号