首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A combination of fluorescence spectroscopy and molecular dynamics (MD) is applied to assess the conformational dynamics of a peptide making up the outermost ring of the nicotinic acetylcholine receptor (AChR) transmembrane region and the effect of membrane thickness and cholesterol on the hydrophobic matching of this peptide. The fluorescence studies exploit the intrinsic fluorescence of the only tryptophan residue in a synthetic peptide corresponding to the fourth transmembrane domain of the AChR γ subunit (γM4-Trp6) reconstituted in lipid bilayers of varying thickness, and combine this information with quenching studies using depth-sensitive phosphatidylcholine spin-labeled probes and acrylamide, polarization of fluorescence, and generalized polarization of Laurdan. A direct correlation was found between bilayer width and the depth of insertion of Trp6. We further extend our recent MD study of the conformational dynamics of the AChR channel to focus on the crosstalk between M4 and the lipid-belt region. The isolated γM4 peptide is shown to possess considerable orientational flexibility while maintaining a linear α-helical structure, and to vary its tilt depending on bilayer width and cholesterol (Chol) content. MD studies also show that γM4 also establishes contacts with the other TM peptides on its inner face, stabilizing a shorter TM length that is still highly sensitive to the lipid environment. In the native membrane the topology of the M4 ring is likely to exhibit a similar behavior, dynamically modifying its tilt to match the hydrophobic thickness of the bilayer.  相似文献   

2.
A combination of fluorescence spectroscopy and molecular dynamics (MD) is applied to assess the conformational dynamics of a peptide making up the outermost ring of the nicotinic acetylcholine receptor (AChR) transmembrane region and the effect of membrane thickness and cholesterol on the hydrophobic matching of this peptide. The fluorescence studies exploit the intrinsic fluorescence of the only tryptophan residue in a synthetic peptide corresponding to the fourth transmembrane domain of the AChR gamma subunit (gammaM4-Trp(6)) reconstituted in lipid bilayers of varying thickness, and combine this information with quenching studies using depth-sensitive phosphatidylcholine spin-labeled probes and acrylamide, polarization of fluorescence, and generalized polarization of Laurdan. A direct correlation was found between bilayer width and the depth of insertion of Trp(6). We further extend our recent MD study of the conformational dynamics of the AChR channel to focus on the crosstalk between M4 and the lipid-belt region. The isolated gammaM4 peptide is shown to possess considerable orientational flexibility while maintaining a linear alpha-helical structure, and to vary its tilt depending on bilayer width and cholesterol (Chol) content. MD studies also show that gammaM4 also establishes contacts with the other TM peptides on its inner face, stabilizing a shorter TM length that is still highly sensitive to the lipid environment. In the native membrane the topology of the M4 ring is likely to exhibit a similar behavior, dynamically modifying its tilt to match the hydrophobic thickness of the bilayer.  相似文献   

3.
《Biophysical journal》2021,120(20):4501-4511
The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.  相似文献   

4.
A set of seven peptides constituting the various loops and most of the surface areas of α-bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).  相似文献   

5.
This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal delta12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L(alpha) phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8 degrees with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a peptide-bilayer model useful in the consideration of local protein folding in the microsomal desaturases, and presents a model of arginine and tyrosine control of transmembrane protein stability and insertion.  相似文献   

6.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane alpha-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12 degrees relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 A at its narrowest, to 8.6 A at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

7.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane α-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12° relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 Å at its narrowest, to 8.6 Å at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

8.
A set of seven peptides constituting the various loops and most of the surface areas of -bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).  相似文献   

9.
The reduction of plastocyanin by cytochromes c and f has been investigated with mutants of spinach plastocyanin in which individual, highly conserved surface residues have been modified. These include Leu-12 and Phe-35 in the 'northern' hydrophobic patch and Tyr-83 and Asp-42 in the 'eastern' acidic patch. The differences observed all involved binding rather than the intrinsic rates of electron transfer. The Glu-12 and Ala-12 mutants showed small but significant decreases in binding constant with cytochrome c, even though the cytochrome is not expected to make contact with the northern face of plastocyanin. These results, and small changes in the EPR parameters, suggested that these mutations cause small conformational changes in surface residues on the eastern face of plastocyanin, transmitted through the copper centre. In the case of cytochrome f, the Glu-12 and Ala-12 mutants also bound less strongly, but Leu12Asn showed a marked increase in binding constant, suggesting that cytochrome f can hydrogen bond directly to Asn-12 in the reaction complex. A surprising result was that the kinetics of reduction of Asp42Asn were not significantly different from wild type, despite the loss of a negative charge.  相似文献   

10.
The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.  相似文献   

11.
P Ghosh  R M Stroud 《Biochemistry》1991,30(14):3551-3557
A peptide (MA-beta) corresponding to a segment of the nicotinic acetylcholine receptor (AChR) that has amphipathic alpha-helical periodicity forms ion channels in artificial phospholipid bilayers. The MA-beta ion channels are very stable, comprise two discrete conductance states, and undergo rapid, flickering-type closings. The discrete-conductance ion channels formed by MA-beta contrast with the continuous-conductance ion channels formed by a peptide (M2-delta) identical in sequence with M2 [Oiki, S., Danho, W., Madison, V., & Montal, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8703-8707], a putative transmembrane segment of the AChR. Neither MA-beta nor M2-delta sufficiently mimics the electrophysiological properties of the native AChR. We suggest that peptide ion channels can be classified into at least three general groups: discrete-conductance channels, such as MA-beta; continuous-conductance channels, such as M2-delta; and membrane disruptors, such as those formed by short, amphipathic alpha-helical peptides.  相似文献   

12.
Sequence-specific spin-labeled oligodeoxynucleotides with conformation-sensitive electron paramagnetic resonance (EPR) signals are synthesized and examined as solution-phase nucleic acid hybridization probes. Either a proxyl or tempo ring linked to the C(5) position of deoxyuridine (dU) by a nonrigid two-atom methylamino tether is incorporated within 15-mers by phosphotriester chemistry yielding stable spin-labeled probes with distinctive EPR specific activity (AEPR) values. The AEPR is greater for a proxyl-labeled than for a tempo-labeled probe and is consistent with EPR data of enzymatically labeled 26-mers [Bobst, A. M., Pauly, G. T., Keyes, R. S., and Bobst, E. V. (1988) FEBS Lett. 228, 33-36], after normalizing for percent labeling. The spectral characteristics of the free probes and the probe/target complexes are similar to those of enzymatically spin-labeled nucleic acids containing a different nonrigid two-atom-tethered spin label [Bobst, A. M., Kao, S.-C., Toppin, R. C., Ireland, J. C., and Thomas, I. E. (1984) J. Mol. Biol. 173, 63-70]. The presence of target DNA is detected in solution by EPR spectroscopy and the assay is based on the characteristic line-shape change associated with hybridization. The EPR spectra of free and bound probe reflect little interference from changes in global dynamics of the probe, and the line-shape change upon complexation results primarily from a change in local base dynamics. The presence or absence of hybridization can be detected in a loop-gap resonator with about 1 pmol of spin-labeled 15-mer within minutes.  相似文献   

13.
The structures of functional peptides corresponding to the predicted channel-lining M2 segments of the nicotinic acetylcholine receptor (AChR) and of a glutamate receptor of the NMDA subtype (NMDAR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. Both M2 segments form straight transmembrane alpha-helices with no kinks. The AChR M2 peptide inserts in the lipid bilayer at an angle of 12 degrees relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminal side of the membrane, which is assigned to be intracellular. A model built from these solid-state NMR data, and assuming a symmetric pentameric arrangement of M2 helices, results in a funnel-like architecture for the channel, with the wide opening on the N-terminal intracellular side.  相似文献   

14.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

15.
The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2α isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2α ECD bound to each of the Ucn peptides. The CRFR2α ECD forms the same fold observed for the CRFR1 and mouse CRFR2β ECDs but contains a unique N-terminal α-helix formed by its pseudo signal peptide. The CRFR2α ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the α-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2α Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.  相似文献   

16.
Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (HpPLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-β-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA).Small changes in the acyl chain order in the sub-polar region and at the methyl-terminal induced by lipid peroxidation were detected by X-band EPR. Concomitantly, the polarity and proticity of the membrane bilayer in those regions were investigated at W band in frozen samples. Analysis of the gxx and Azz parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC–HpPLPC bilayer revealed that water molecules are statistically favored with respect to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water penetration in the bilayer.  相似文献   

17.
Recognition of substrates by the protein kinase glycogen synthase kinase 3 (GSK-3) usually requires prior phosphorylation of the substrate. Using a peptide based on the glycogen synthase sequence PRPAS(3a)VPPS (3b)PSLS(3c)RHSS(4)PHQS(5)EDEEEP (where the numbers in parentheses denote sites of phosphorylation), we showed previously that phosphorylation of site 5 by casein kinase II was necessary for GSK-3 to phosphorylate the peptide at sites 3a, 3b, 3c, and 4 (Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W., and Roach, P. J. (1987) J. Biol. Chem. 262, 14042-14048). In the present study, variant peptides were synthesized in which sites 3a, 3b, 3c, and 4 were individually replaced by Ala residues (denoted Ala-3c, etc.). All of the variant peptides were substrates for casein kinase II. The peptide Ala-4,Ser(P)-5 was not a substrate for GSK-3 confirming the minimal recognition sequence for the protein kinase as -SXXXS(P)-. The peptides Ala-3c,Ser(P)-5, Ala-3b,Ser(P)-5, and Ala-3a,Ser(P)-5, however, were all good substrates for GSK-3 with apparent Km values in the range 3-6 microns, comparable with that of the parent peptide. GSK-3 could introduce 1, 2, and 3 phosphates, respectively, into these substrates, always COOH-terminal to the substituted Ala residue. Ala-4,Ser(P)-5 and Ala-3c,Ser(P)-4,Ser(P)-5 were competitive inhibitors for phosphorylation of the parent peptide, with Ki values of 2 and 5 microns, respectively. The data suggest (i) that GSK-3 recognizes serines in the motif -SXXXS(P)-, and (ii) that multiple phosphorylation of the peptide substrate has an obligate order, with the sequential formation of new recognition sequences.  相似文献   

18.
A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1H NMR, CD, and thermal denaturation studies indicate that 1a (T*) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules.  相似文献   

19.
T Tsuji  E T Kaiser 《Proteins》1991,9(1):12-22
A series of 37-residue analogues of the pseudo-EF hand in bovine calbindin D9K has been synthesized by the solid phase method. In the presence of calcium an alpha-helical induction of up to 44% was observed for the peptide with the native sequence with a Kd for calcium binding of 0.35 mM. A number of amino acid substitutions have been carried out to study the packing of the two alpha-helices based on the crystal structure of the entire protein. Three strategies were employed: (1) replacement of the Leu residues, which in the crystal structure do not contribute to the hydrophobic interaction between the two helices, by Gln or Ala in order to control the orientation of the helix packing, (2) stabilization of the individual helix by introducing a Glu-...Lys+ salt bridge or by changing the N-terminal charge to compensate for the helix dipole moment, and (3) introduction of a disulfide bond between the two helices to help the packing of the helices. The mutants with the substitution of (Leu-30, Leu-32) to (Gln-30, Gln-32), (Gln-30, Ala-32), and (Ala-30,Ala-32) designed based on the strategy 1 do not show any affinity for calcium and have low alpha-helicity. The Leu-30 to Lys-30 mutant designed to form a salt bridge between the side chains of Glu-26 and Lys-30 has an apparent Kd for calcium of 6.8 mM. Kd of the N-terminal acetylated and succinylated mutants are 0.41 and 0.45 mM, respectively, and no increase in the alpha-helix content relative to that of the natural sequence peptide is observed. The disulfide containing mutants, namely Tyr-13, Leu-31 to Cys-13, Cys-31 and Tyr-13, Leu-31 to Cys-13, hCys-31, show apparent Kd values of 0.93 and 2.1 mM, respectively. The former mutant shows the highest alpha-helix content among the peptides studied in the presence and absence of calcium. While it is difficult to construct an isolated and rigid helix-loop-helix motif with peptides of this size, introduction of a disulfide bond proved to be effective for this purpose.  相似文献   

20.
Electron paramagnetic resonance (EPR) was used to optimize the solid-phase peptide synthesis of a membrane-bound peptide labeled with TOAC (2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid). The incorporation of this paramagnetic amino acid results in a nitroxide spin label coupled rigidly to the alpha-carbon, providing direct detection of peptide backbone dynamics by EPR. We applied this approach to phospholamban, which regulates cardiac calcium transport. The synthesis of this amphipathic 52-amino-acid membrane peptide including TOAC is a challenge, especially in the addition of TOAC and the next several amino acids. Therefore, EPR of synthetic intermediates, reconstituted into lipid bilayers, was used to ensure complete coupling and 9-fluorenylmethoxycarbonyl (Fmoc) deprotection. The attachment of Fmoc-TOAC-OH leads to strong immobilization of the spin label, whereas Fmoc deprotection dramatically mobilizes it, producing an EPR spectral peak that is completely resolved from that observed before deprotection. Similarly, coupling of the next amino acid (Ser) restores the spin label to strong immobilization, giving a peak that is completely resolved from that of the preceding step. For several subsequent steps, the effect of coupling and deprotection is similar but less dramatic. Thus, the sensitivity and resolution of EPR provides a quantitative monitor of completion at each of these critical steps in peptide synthesis. Mass spectrometry, circular dichroism, and Edman degradation were used in concert with EPR to verify the chemistry and characterize the secondary structure. In conclusion, the application of conventional analytical methods in combination with EPR offers an improved approach to optimize the accurate synthesis of TOAC spin-labeled membrane peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号