首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Understanding dendritic cell (DC) subset functions should lead to the development of novel types of vaccine. Here we characterized expression of XC chemokine receptor 1 (XCR1) and its ligand, XCL1. Murine XCR1 was the only chemokine receptor selectively expressed in CD8α+ conventional DCs. XCL1 was constitutively expressed in NK cells, which contribute to serum XCL1 levels. NK and CD8+ T cells increased XCL1 production upon activation. These expression patterns were conserved in human blood cells, including the BDCA3+ DC subset. Thus, in human and mice, certain DC subsets should be chemotactic towards NK or activated CD8+ T cells through XCR1.  相似文献   

2.
Cytomegaloviruses (CMV) have developed various strategies to escape the immune system of the host. One strategy involves the expression of virus-encoded chemokines to modulate the host chemokine network. We have identified in the English isolate of rat CMV (murid herpesvirus 8 [MuHV8]) an open reading frame encoding a protein homologous to the chemokine XCL1, the only known C chemokine. Viral XCL1 (vXCL1), a glycosylated protein of 96 amino acids, can be detected 13 h postinfection in the supernatant of MuHV8-infected rat embryo fibroblasts. vXCL1 exclusively binds to CD4 rat dendritic cells (DC), a subset of DC that express the corresponding chemokine receptor XCR1. Like endogenous rat XCL1, vXCL1 selectively chemoattracts XCR1+ CD4 DC. Since XCR1+ DC in mice and humans have been shown to excel in antigen cross-presentation and thus in the induction of cytotoxic CD8+ T lymphocytes, the virus has apparently hijacked this gene to subvert cytotoxic immune responses. The biology of vXCL1 offers an interesting opportunity to study the role of XCL1 and XCR1+ DC in the cross-presentation of viral antigens.  相似文献   

3.
Chemokine-mediated recruitment of regulatory cell subsets to the airway during inflammation and enhancement of their activities are potential strategies for therapeutic development in allergic asthma (AA). In this study, we aim to explore the role of XCL1, a chemokine associated with immune suppression and allergy, on CD4(+)CD25(high)CD127(low/-) regulatory T cell (Treg) function in AA. Flow cytometry and PCR analysis showed a reduction in XCL1 and XCR1 expression in AA Treg compared with healthy control and nonallergic asthmatic counterparts. This reduction in XCL1 expression was associated with the suboptimal regulatory function of Treg in AA. Interestingly, incubation with recombinant human XCL1 significantly increased Treg-mediated suppression and cytotoxicity by up-regulating expression of XCL1 and chief effector molecules of Treg function. Altogether, these results suggest an association between dysregulated XCL1 expression and reduced Treg activities in AA, as well as a potential role of XCL1 in reversing defective Treg function in the disease.  相似文献   

4.
CD8+ T cells play a key role in the in vivo control of HIV-1 replication via their cytolytic activity as well as their ability to secrete non-lytic soluble suppressive factors. Although the chemokines that naturally bind CCR5 (CCL3/MIP-1α, CCL4/MIP- 1β, CCL5/RANTES) are major components of the CD8-derived anti-HIV activity, evidence indicates the existence of additional, still undefined, CD8-derived HIV-suppressive factors. Here, we report the characterization of a novel anti-HIV chemokine, XCL1/lymphotactin, a member of the C-chemokine family that is produced primarily by activated CD8+ T cells and behaves as a metamorphic protein, interconverting between two structurally distinct conformations (classic and alternative). We found that XCL1 inhibits a broad spectrum of HIV-1 isolates, irrespective of their coreceptor-usage phenotype. Experiments with stabilized variants of XCL1 demonstrated that HIV-1 inhibition requires access to the alternative, all-β conformation, which interacts with proteoglycans but does not bind/activate the specific XCR1 receptor, while the classic XCL1 conformation is inactive. HIV-1 inhibition by XCL1 was shown to occur at an early stage of infection, via blockade of viral attachment and entry into host cells. Analogous to the recently described anti-HIV effect of the CXC chemokine CXCL4/PF4, XCL1-mediated inhibition is associated with direct interaction of the chemokine with the HIV-1 envelope. These results may open new perspectives for understanding the mechanisms of HIV-1 control and reveal new molecular targets for the design of effective therapeutic and preventive strategies against HIV-1.  相似文献   

5.
Chemokines and their receptors have been reported to drive immune cells into tumours or to be directly involved in the promotion or inhibition of the development of tumours. However, their expression in regional lymph node (LN) tissues in melanoma patients remains unknown. The present study investigated the relationship between the expression of mRNA of chemokines and their receptors and clinicopathology of the regional LN tissues of skin cutaneous melanoma (SKCM) patients available in The Cancer Genome Atlas. The relationship between chemokines and their receptors and the composition of immune cells within the tumour was analysed. In SKCM regional LN tissues, the high expression of 32 types of chemokines and receptors, namely CCL2, 4-5, 7-8, 13, 22-25, CCR1-9, CXCL9-13, 16, CXCR3, 5, 6, XCL1-2 and XCR1 in LN was associated with favourable patient prognosis. Conversely, high expression of CXCL17 was an indicator of poor prognosis. The expression of mRNA for CXCL9-11, 13, CXCR3, 6, CCL2, 4, 5, 7, 8, 25, CCR1, 2, 5, and XCL1, 2 in regional LN tissues was positively correlated with the fraction of CD8-positive T cells and M1 macrophages, and was negatively correlated with M0 macrophages. CCR4, 6-9, CCL13, 22, 23 and XCR1 were positively correlated with the fraction of memory B cells and naive T cells, and negatively correlated with M0 macrophages and resting mast cells, suggesting that chemokines and their receptors may affect the prognosis of patients by guiding immune cells into the tumour microenvironment to eliminate tumour cells.  相似文献   

6.
To better characterize the cellular source of lymphotactin (XCL1), we compared XCL1 expression in different lymphocyte subsets by real-time PCR. XCL1 was constitutively expressed in both PBMC and CD4(+) cells, but its expression was almost 2 log higher in CD8(+) cells. In vitro activation was associated with a substantial increase in XCL1 expression in both PBMC and CD8(+) cells, but not in CD4(+) lymphocytes. The preferential expression of XCL1 in CD8(+) cells was confirmed by measuring XCL1 production in culture supernatants, and a good correlation was found between figures obtained by real-time PCR and XCL1 contents. XCL1 expression was mostly confined to a CD3(+)CD8(+) subset not expressing CD5, where XCL1 expression equaled that shown by gammadelta(+) T cells. Compared with the CD5(+) counterpart, CD3(+)CD8(+)CD5(-) cells, which did not express CD5 following in vitro activation, showed preferential expression of the alphaalpha form of CD8 and a lower expression of molecules associated with a noncommitted/naive phenotype, such as CD62L. CD3(+)CD8(+)CD5(-) cells also expressed higher levels of the XCL1 receptor; in addition, although not differing from CD3(+)CD8(+)CD5(+) cells in terms of the expression of most alpha- and beta-chemokines, they showed higher expression of CCL3/macrophage inflammatory protein-1alpha. These data show that TCR alphabeta-expressing lymphocytes that lack CD5 expression are a major XCL1 source, and that the contribution to its synthesis by different TCR alphabeta-expressing T cell subsets, namely CD4(+) lymphocytes, is negligible. In addition, they point to the CD3(+)CD8(+)CD5(-) population as a particular T cell subset within the CD8(+) compartment, whose functional properties deserve further attention.  相似文献   

7.
Li  Kun  Bao  Huifang  Wei  Guoyan  Li  Dong  Chen  Yingli  Fu  Yuanfang  Cao  Yimei  Li  Pinghua  Sun  Pu  Bai  Xingwen  Ma  Xueqin  Zhang  Jing  Lu  Zengjun  Liu  Zaixin 《Applied microbiology and biotechnology》2017,101(21):7889-7900

Targeting antigen to dendritic cells (DCs) is a promising way to manipulate the immune response and to design prophylactic molecular vaccines. In this study, the cattle XCL1, ligand of XCR1, was fused to the type O foot-and-mouth disease virus (FMDV) multi-epitope protein (XCL-OB7) to create a molecular vaccine antigen, and an XCL-OB7 protein with a mutation in XCL1 was used as the control. XCL-OB7 protein specifically bound to the XCR1 receptor, as detected by flow cytometry. Cattle vaccinated with XCL-OB7 showed a significantly higher antibody response than that to the XCL-OB7 control (P < 0.05). In contrast, when XCL-OB7 was incorporated with poly (I:C) to prepare the vaccine, the antibody response of the immunized cattle was significantly decreased in this group and was lower than that in the XCL-OB7 plus poly (I:C) group. The FMDV challenge indicated that cattle immunized with the XCL-OB7 alone or the XCL-OB7 plus poly (I:C) obtained an 80% (4/5) clinical protective rate. However, cattle vaccinated with XCL-OB7 plus poly (I:C) showed more effective inhibition of virus replication than that in the XCL-OB7 group after viral challenge, according to the presence of antibodies against FMDV non-structural protein 3B. This is the first test of DC-targeted vaccines in veterinary medicine to use XCL1 fused to FMDV antigens. This primary result showed that an XCL1-based molecular vaccine enhanced the antibody response in cattle. This knowledge should be valuable for the development of antibody-dependent vaccines for some infectious diseases in cattle.

  相似文献   

8.
9.
Atherosclerosis, which is the fundamental basis for cardiovascular diseases in the global world, is driven by multiple roles of the immune system in the circulation and vascular plaque. Recent studies demonstrated that T-cell infiltrates into aorta plaque and plays an important role in recruiting macrophages to the vascular wall. Here, using single-cell sequencing, we found T cells in patients’ plaques and differentially expressed genes (DEGs) of T cells in atherosclerosis mice. T cells and macrophages were continuously activated in atherosclerotic plaque in patients. Besides, other immune cells also take part in atherogenesis, such as natural killer (NK) cells, granulocytes. Interferon (IFN)/NFκB signaling, the AKT signaling pathway was highly activated in mouse (in vivo) and cell line (in vitro). TCF7 and XCL1 were regulated by AKT and NFκB, respectively through protein–protein network analysis. Therefore, we attempt to clarify and discover potential genes and new mechanisms associated with atherosclerosis for drug development.  相似文献   

10.
The C chemokine lymphotactin (Lptn) has been reported to act specifically on CD4(+) and CD8(+) T lymphocytes and natural killer (NK) cells, but not monocytes. However, the chemotactic effect of Lptn on other types of hematopoietic cells has not been well studied. In this study we investigated (i) the chemotactic influences of Lptn on T and B lymphocytes, neutrophils, monocytes, and dendritic cells, and (ii) the expression of the Lptn receptor (XCR1) by these cells, using RT-PCR. Our data showed that Lptn is chemotactic for B lymphocytes and neutrophils as well as T lymphocytes, but not for monocytes or dendritic cells, and that XCR1 expression is found only in association with T and B lymphocytes and neutrophils, but not monocytes or dendritic cells. Thus, this study is the first demonstration of a chemotactic effect of Lptn on neutrophils and confirms the association of this effect with expression of the XCR1 receptor on these cells. These data suggest that Lptn could potentially be an important protein in the regulation of T and B lymphocytes and neutrophil trafficking, and thereby also their roles in inflammatory and immunological responses.  相似文献   

11.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

12.
Prolactin (PRL) has long been implicated in Xenopus metamorphosis as an anti-metamorphic and/or juvenilizing hormone. Numerous studies showed that PRL could prevent effects of either endogenous or exogenous thyroid hormone (TH; T(3)). It has been shown that expression of matrix metalloproteinases (MMPs) is induced by TH during Xenopus metamorphosis. Direct in vivo evidence, however, for such anti-TH effects by PRL with respect to MMPs has not been available for the early phase of Xenopus development or metamorphosis. To understand the functional role of PRL, we investigated effects of PRL on Xenopus collagenase-3 (XCL3) and collagenase-4 (XCL4) expression in a cultured Xenopus laevis cell line, XL-177. Northern blot analysis demonstrated that XCL3 and XCL4 expression were not detected in control or T(3)-treated cells, but were differentially induced by PRL in a dose- and time-dependent fashion. Moreover, treatment with IL-1alpha as well as phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, or H8, a protein kinase A (PKA) inhibitor, augmented PRL-induced collagenase expression, suggesting that multiple protein kinase pathways and cytokines may participate in PRL-induced collagenase expression. Interestingly, XCL3 expression could be induced in XL-177 cells by T(3), but only when co-cultured with prometamorphic Xenopus tadpole tails (stage 54/55), suggesting that the tails secrete a required intermediate signaling molecule(s) for T(3)-induced XCL3 expression. Taken together, these data demonstrate that XCL3 and XCL4 can be differentially induced by PRL and T(3) and further suggest that PRL is a candidate regulator of TH-independent collagenase expression during the organ/tissue remodeling which occurs in Xenopus development.  相似文献   

13.
Lymphotactin is unique among chemokines in that it contains only two of four conserved cysteines and may possess a structure less constrained than other chemokines. The viral chemokine vMIP-II, which presumably has a structure similar to that of CC chemokines has been shown to inhibit many chemokine receptors, but its activity at GPR5/XCR1 has not been described. Interestingly, vMIP-II (but not vMIP-I) was found to be a potent antagonist of lymphotactin activity at GPR5/XCR1, extending the range of chemokine classes that this viral protein is known to inhibit to include the C class chemokine. In addition, we have extended previous analyses of GPR5/XCR1 expression and show that this receptor is expressed in leukocyte cells previously shown to be responsive to lymphotactin.  相似文献   

14.
Fusokines are proteins formed by the fusion of two cytokines. They have greater bioavailability and therapeutic potential than individual cytokines or a combination of different cytokines. Interferon-gamma-inducible protein 10 (CXCL10) and lymphotactin (XCL1) are members of the chemotactic family of cytokines, which induce tumor regression by eliciting immune-system cell chemotaxis. We engineered a replication-deficient adenoviral system expressing CXCL10/XCL1 fusokine (Ad FIL) and assessed its chemotactic response in vitro and in vivo. The CXCL10/XCL1 fusokine elicited a greater chemotactic effect in IL-2 stimulated lymphocytes than individual or combined cytokines in vitro. CXCL10/XCL1 fusokine biological activity was demonstrated in vivo by intratumoral chemoattraction of CXCR3+ cells. Thus, this novel CXCL10/XCL1 fusokine may represent a potential tool for gene therapy treatment of cancer and other illnesses that require triggering immune-system cell recruitment.  相似文献   

15.
Tumor-associated antigens that can be recognized by the immune system include the MAGE-family, p53, MUC-1, HER2/neu and p21ras. Despite their expression of these distinct antigens, tumor elimination by the immune system is often inefficient. Postulated mechanisms include insufficient expression of co-stimulatory or adhesion molecules by tumor cells, or defective processing and presentation of antigens on their cell surfaces. Tumor cells may also evade immune attack by expressing CD95 (APO-1/Fas) ligand or other molecules that induce apoptosis in activated T cells. Here we describe RCAS1 (receptor-binding cancer antigen expressed on SiSo cells), a membrane molecule expressed on human cancer cells. RCAS1 acts as a ligand for a putative receptor present on various human cell lines and normal peripheral lymphocytes such as T, B and NK cells. The receptor expression was enhanced by activation of the lymphocytes. RCAS1 inhibited the in vitro growth of receptor-expressing cells and induced apoptotic cell death. Given these results, tumor cells may evade immune surveillance by expression of RCAS1, which would suppress clonal expansion and induce apoptosis in RCAS1 receptor-positive immune cells.  相似文献   

16.
趋化因子及其受体信号通路是肿瘤细胞转移的主要调控因素之一,趋化因子受体CXCR4和XCR1都被证明参与了乳腺癌的进展。本文基于膜蛋白酵母双杂交发现了XCR1-CXCR4这一尚未报道过的相互作用对,进一步通过生物发光共振能量转移技术(bioluminescence resonance energy transfer, BRET)验证并发现XCR1可以竞争性地结合CXCR4受体 (P<0.01),形成异源二聚体。在功能方面,首先通过XCR1和CXCR4瞬时转染HEK293细胞进行划痕实验,加入30 nmol/L SDF-1β后,共转组41.55%的伤口愈合率低于单转CXCR4组的58.75%,说明XCR1的共表达抑制了基质细胞衍生因子-1β(SDF-1β)/ CXC趋化因子受体4型 (CXCR4)信号通路介导的细胞运动性(P<0.05);其次,利用CXCR4-EGFP转基因HEK293细胞系,共表达XCR1后,流式细胞术检测细胞表面CXCR4受体荧光。结果显示,在30 nmol/L SDF-1β的诱导下,XCR1能够加速异源二聚体中CXCR4的内化 (P<0.05),使得内化率从14.38%上升到64.10%;最后,分别检测了控制细胞增殖的Akt和控制细胞迁移的ERK信号通路的变化。结果发现,在SDF-1β刺激10 min后,单转CXCR4组的ERK磷酸化为3.59倍,而共转染XCR1/CXCR4组ERK的磷酸化水平仅为2.08倍,二聚化使得ERK磷酸化水平下降,且激活时间缩短;而Akt的磷酸化水平几乎不受影响。本研究揭示了CXCR4和XCR1二聚化现象,以及该二聚体对CXCR4介导的细胞运动性、受体内化和ERK磷酸化的影响。提示靶向XCR1的药物可以成为CXCR4交叉脱敏的候选药物,对于抑制乳腺癌转移提供了一个可供选择的思路。  相似文献   

17.
In this study we investigated whether T cells expressing high or low levels of CD62L were differentially susceptible to the T cell chemokine lymphotactin. We found that lymphotactin induced preferential migration of antigen-specific (CD62L(lo)) T cells over the nonspecific (CD62L(hi)) T cells in vitro and in vivo. The differing migratory abilities correlated with higher levels of mRNA encoding the lymphotactin receptor (XCR1) on the CD62L(lo) cells compared to the CD62L(hi) cells. Thus, we have identified a coupling mechanism between the activation of T cells and acquisition of new homing properties, in this case conferred by XCR1 expression. These data confirm that at least one function of lymphotactin includes mediating the recruitment of recently activated antigen-specific T cells.  相似文献   

18.
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.  相似文献   

19.
The location, timing and intensity of Nodal signalling are all critical for proper patterning of the vertebrate embryo. Genetic evidence from mouse and zebrafish indicates that EGF-CFC family members are essential for Nodal ligands to signal. However, the Xenopus EGF-CFC, FRL1, has been implicated in Wnt signalling and in activation of Erk MAP kinase. Here, we identify two additional Xenopus EGF-CFCs, XCR2 and XCR3. We have focused on the role of XCR1/FRL1 and XCR3, which are both expressed at gastrula stages when Nodal signalling is active. We demonstrate spatial and temporal regulation of XCR1 protein expression, whereas XCR3 appears to be expressed ubiquitously. Using gain and loss of function approaches, we show that XCR1 and XCR3 are required for Nodal-related ligands to signal during early Xenopus development. Moreover, different Nodal-related ligands require different XCRs to signal. When both XCR1 and XCR3 are knocked down, activation of the Nodal intracellular signal transducer, Smad2, is severely inhibited and neither gastrulation nor mesendoderm formation occurs. Together our results indicate that the XCRs are important for modulation of the timing and intensity of Nodal signalling in Xenopus embryos.  相似文献   

20.
Recent studies show that cancer cells are sometimes able to evade the host immunity in the tumor microenvironment. Cancer cells can express high levels of immune inhibitory signaling proteins. One of the most critical checkpoint pathways in this system is a tumor-induced immune suppression (immune checkpoint) mediated by the programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1). PD-1 is highly expressed by activated T cells, B cells, dendritic cells, and natural killer cells, whereas PD-L1 is expressed on several types of tumor cells. Many studies have shown that blocking the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. In this review, we highlight a brief overview of the molecular and biochemical events that are regulated by the PD-1 and PD-L1 interaction in various cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号