首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phorid fly, Pseudacteon tricuspis Borgmeier, is a parasitoid of the red imported fire ant, Solenopsis invicta Buren. This fly has been reported to use fire ant chemicals, specifically venom alkaloids and possibly alarm pheromone to locate its host. A recent study identified 2-ethyl-3,6-dimethyl pyrazine as a component of the alarm pheromone of S. invicta. To determine the possible involvement of this fire ant alarm pheromone component in mediating fire ant-phorid fly interactions, we tested electroantennogram (EAG) and behavioral responses of P. tricuspis females to the commercially available mixture of 2-ethyl-3,6-dimethyl pyrazine and its 3,5-dimethyl isomer, as well as six structurally related alkylpyrazine analogs at varying doses. Pseudacteon tricuspis females showed significant EAG response to 2-ethyl-3,6(or 5)-dimethyl pyrazine (herein referred to as pheromone-isomer) at all doses, 0.001-10 μg. Among the tested alkylpyrazine analogs, 2,3-diethyl-5-methyl pyrazine showed significant EAG activity at 0.1 and 1 μg. 2,3-dimethyl pyrazine also showed significant EAG activity at 0.1 μg. Results of four-choice olfactometer bioassays demonstrated significant attraction of P. tricuspis females to the pheromone-isomer (2-ethyl-3,6(or 5)-dimethyl pyrazine) at all tested doses (0.01, 0.1, 1 and 10 μg). The analogs, 2,3-diethyl-5-methyl pyrazine and 2,3-dimethyl pyrazine were significantly better than the control at the higher doses (0.1, 1 and 10 μg). The pheromone-isomer was significantly better than both analogs at two doses, 0.1 and 1 μg. These results confirm that the reported fire ant alarm pheromone component plays a role in mediating attraction of phorid flies to host workers. Venom alkaloids were previously shown to attract P. tricuspis; therefore, we propose that fire ant alarm pheromones may act in tandem or synergistically with venom alkaloids to attract phorid fly parasitoids to fire ant workers.  相似文献   

2.
Pseudacteon tricuspis, Pseudacteon obtusus and Pseudacteon curvatus are three species of parasitic phorid flies (Diptera: Phoridae), which have been introduced as classical biological control agents of imported, Solenopsis fire ants (Hymenoptera: Formicidae) in the southern USA. Previous studies demonstrated the behavioral response of P. tricuspis to the venom alkaloids and alarm pheromone of the fire ant, S. invicta. In the present study, we compared the responses of P. tricuspis, P. obtusus and P. curvatus to Solenopsis invicta alarm pheromone, venom alkaloids, or a mixture of both chemicals in four-choice olfactometer bioassays. The main hypothesis tested was that the fire ant alarm pheromone and venom alkaloids act in concert to attract Pseudacteon phorid flies. Both sexes of all three Pseudacteon species were attracted to low doses of the fire ant alarm pheromone or venom alkaloids (i.e. 1 ant worker equivalent) alone. However, the flies were significantly more attracted to a mixture of both chemicals (i.e., 1:1 mixture of alarm pheromone + alkaloids) than to either chemical. The results suggest an additive rather than a synergistic effect of combining both chemicals. Comparing the fly species, P. tricuspis showed relatively greater attraction to cis alkaloids, whereas the alkaloid mixture (cis + trans) was preferred by P. obtusus and P. curvatus. In general, no key sexual differences were recorded, although females of P. tricuspis and P. obtusus showed slightly higher response than conspecific males to lower doses of the alarm pheromone. The ecological significance of these findings is discussed, and a host location model is proposed for parasitic phorid flies involving the use of fire ant alarm pheromone and venom alkaloids as long range and short range attractants, respectively.  相似文献   

3.
[背景]2-乙基-3,6-二甲基吡嗪是红火蚁告警信息素的主要成分,本研究旨在分离、鉴定红火蚁工蚁浸提液中告警信息素成分,分析红火蚁工蚁对告警信息素合成样品混合物的电生理反应。[方法]200 g红火蚁工蚁的正己烷浸提液过硅胶柱,正己烷—丙酮体系洗脱,气相色谱(GC)和气相色谱—质谱联用(GC-MS)分析检测浸提液中含告警信息素的流分,气相色谱—触角电位联用仪(GC-EAD)分析红火蚁工蚁对2-乙基-3,5(6)-二甲基吡嗪混合物的电生理活性。[结果]红火蚁工蚁正己烷浸提液硅胶柱层析分离能够得到含2-乙基-3,6-二甲基吡嗪的流分,GC-MS分析的保留时间在11.45 min。经过GC-EAD分析,发现红火蚁工蚁对2-乙基-3,5(6)-二甲基吡嗪混合物有显著的电生理反应。[结论与意义]红火蚁工蚁对2-乙基-3,6-二甲基吡嗪的电生理反应比2-乙基-3,5-二甲基吡嗪高。  相似文献   

4.
15N and 1HN chemical shift data and 15N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the β-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the β-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.  相似文献   

5.

Background

Aphids are agricultural pests of great economical interest. Alternatives to insecticides, using semiochemicals, are of difficult applications. In fact, sex pheromones are of little use as aphids reproduce partenogenetically most of the time. Besides, the alarm pheromone, (E)-ß-farnesene for a great number of species, is difficult to synthesize and unstable in the environment. The search for novel semiochemicals to be used in population control can be efficiently approached through the study of the olfactory system at the biochemical level. Recently odorant-binding proteins (OBPs) have been shown to play a central role in olfactory recognition, thus becoming the target of choice for designing new semiochemicals.

Methodology/Principal Findings

To address the question of how the alarm message is recognised at the level of OBPs, we have tested 29 compounds, including (E)-ß-farnesene, in binding assays with 6 recombinant proteins and in behaviour experiments. We have found that good repellents bind OBP3 and/or OBP7, while non repellents present different spectra of binding. These results have been verified with two species of aphids, Acyrthosiphon pisum and Myzus persicae, both using (E)-ß-farnesene as the alarm pheromone.

Conclusions

Our results represent further support to the idea (so far convincingly demonstrated only in Drosophila) that OBPs are involved in decoding the chemical information of odorants and pheromones, and for the first time provide such evidence in other insect species and using wild-type insects. Moreover, the data offer guidelines and protocols for the discovery of potential alarm pheromones, using ligand-binding assays as a preliminary screening before subjecting selected compounds to behaviour tests.  相似文献   

6.
7.
Pheromone-binding proteins (PBPs) were formerly thought to act as passive pheromone carriers. However, recent studies, particularly in Drosophila melanogaster, suggest that PBPs are involved in the recognition of semiochemicals, thus making ligand-binding studies more meaningful. Previously, we cloned three PBPs from Spodoptera litura (Slit), and showed that SlitPBP1 is much more abundant than the other two, particularly in male antennae. To investigate the ligand specificity of SlitPBP1, we expressed the protein in a bacterial system and performed binding experiments with the three components of the specific sex pheromones (Z9-14:Ac, Z9,E11-14:Ac and Z9,E12-14:Ac), as well as with 26 volatile ligands. The results indicated that SlitPBP1 bound all three sex pheromone components with dissociation constants between 0.6 and 1.1 μM. The same protein also bound with comparable affinities several pheromone analogs, but not plant volatiles. The presence of a double bond was the most important element for a strong binding, while its position and configuration also affected the affinity. Finally, the binding of pheromone components is strongly affected by pH, showing a critical pH value corresponding to isoelectric point of the protein. This suggests that a pH-dependent conformational mechanism might exist in SlitPBP1 for pheromone binding and release.  相似文献   

8.
Fire ant venom is an extremely potent allergy-inducing agent containing four major allergens, Sol i 1 to Sol i 4, which are the most frequent cause of hypersensitivity reactions to hymenoptera in the southern USA. The crystal structure of recombinant (Baculovirus) major fire ant allergen Sol i 3 has been determined to a resolution of 3.1 Å by the method of molecular replacement. The secondary-structure elements of Sol i 3 are arranged in an α-β-α sandwich fold consisting of a central antiparallel β-sheet surrounded on both sides by α helices. The overall structure is very similar to that of the homologous wasp venom allergen Ves v 5 with major differences occurring in the solvent-exposed loop regions that contain amino acid insertions. Consequently, the limited conservation of surface chemical properties and topology between Sol i 3 and Ves v 5 may explain the observed lack of relevant cross-reactivity. It is concluded that Sol i 3 recognizes immunoglobulin E antibodies with a distinct set of its own epitopes, which are different from those of Ves v 5. Indeed, the molecular area in Sol i 3 covered by non-conserved residues is large enough to accommodate four unique Sol i 3 epitopes.  相似文献   

9.
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male–female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present a mutational analysis on a PBP from A. transitella (AtraPBP1) to evaluate how the C-terminal helix in this protein controls pheromone binding as a function of pH. Pheromone binds tightly to AtraPBP1 at neutral pH, but the binding is much weaker at pH below 5. Deletion of the entire C-terminal helix (residues 129–142) causes more than 100-fold increase in pheromone-binding affinity at pH 5 and only a 1.5-fold increase at pH 7. A similar pH-dependent increase in pheromone binding is also seen for the H80A/H95A double mutant that promotes extrusion of the C-terminal helix by disabling salt bridges at each end of the helix. The single mutants (H80A and H95A) also exhibit pheromone binding at pH below 5, but with ∼2-fold weaker affinity. NMR and circular dichroism data demonstrate a large overall structural change in each of these mutants at pH 4.5, indicating an extrusion of the C-terminal helix that profoundly affects the overall structure of the low pH form. Our results confirm that sequestration of the C-terminal helix at low pH as seen in the recent NMR structure may serve to block pheromone binding. We propose that extrusion of these C-terminal residues at neutral pH (or by the mutations in this study) exposes a hydrophobic cleft that promotes high affinity pheromone binding.  相似文献   

10.
Alarm pheromones, which have been documented in many species of ants, are thought to elicit responses related to aggressive or defensive behaviour. The volatile odour 6-methyl-5-hepten-2-one is described as an alarm pheromone in several species of ants, including the Australian meat ant, Iridomyrmex purpureus. The alarm pheromone is released by displaying workers that aggregate in the characteristic collective display grounds, located mid-way between colonies or near contested food trees. Workers are typically more aggressive at the latter location, and the alarm pheromone may regulate the collective level of aggression. We investigated this possibility by exposing displaying workers to synthesised alarm pheromone 6-methyl-5-hepten-2-one in a field experiment, and measuring their aggressive behaviour. We found no evidence that exposure to synthesised alarm pheromone caused changes in the aggressive level of workers. Subsequent field experiments revealed that the pheromone functions as an attractant, thereby increasing the density of displaying workers. More densely populated workers also display more aggressively, indicating that the interaction rate of displaying workers may determine the level of aggression in collective displays. This underlying mechanism can explain why displaying ants are more aggressive at the more densely populated food-tree locations than those displaying at locations midway between two neighbouring colony nest sites.  相似文献   

11.
Conformational analysis of N-phenyl-1-naphthylamine and 1-anilinonaphthalene-8-sulfonate (ANS) was carried out using the empirical method. Properties such as conformational energies and dipole moments were considered. Furthermore, the effect of solvent medium was examined through the effective dielectic constant. The N-phenyl-1-naphthylamine molecule showed two energy minima which were independent of dielectic constant. The ANS molecule also showed two energy minima but the minima changed positions when the dielectic constant increased from 1.0 (vacuum) to 80.0 (highly polar medium). Hydrogen bonding appeared to play an important role in stabilizing these conformations. The minimum energy conformations may have relevance to the binding of ANS to lipid bilayers and bimembranes. The dipole moment, in contrast to the energy minimum, was found to depend on orientation of the sulfonate group rather than of the benzene ring with respect to the naphthalene ring. Thus binding and fluorescence enhancement of ANS may be attributed to the orientation of the sulfonate group, which to a large extent may determine the magnitude of the dipole moment and the degree of electrostatic interactions between the probe and binding domains. Various dimensions like intra-atomic distances, volume and area of the ANS molecule were calculated.  相似文献   

12.
Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication.  相似文献   

13.
Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.  相似文献   

14.
When attacked by natural enemies some insect pests, including many aphid species, alert neighboring conspecifics with alarm pheromones. Cornicle secretions with pheromones benefit the attacked aphid but are costly to produce, while alarm pheromone benefits probably fall largely on alerted conspecifics. Given these variable benefits, the likelihood of a secretion may change depending on aphid density. Thus, we first hypothesized that the common alarm pheromone in aphids, E-ß-farnesene (EBF), was present in soybean aphid (Aphis glycines Matsumura) cornicle secretions and would elicit an alarm response in aphids exposed to it. Second, since aphids other than the secretor also benefit from cornicle secretions, we hypothesized that the likelihood of secretion would increase concurrently with the density of neighboring clonal conspecifics. Third, because alarm reaction behavior (e.g. feeding cessation) is probably costly, we hypothesized that alarm reaction behavior would decrease as conspecific density (i.e. alternative prey for an attacking natural enemy) increased. We found that soybean aphids 1) produce cornicle secretions using EBF as an alarm pheromone, 2) are less likely to release cornicle secretions when alone than in a small group (~10 individuals), but that the rate of secretion does not increase further with additional conspecific density, and 3) also exhibit alarm reaction behavior in response to cornicle secretions independent of aphid density. We show that soybean aphids can use their cornicle secretions to warn their neighbors of probable attack by natural enemies, but that both secretion and alarm reaction behavior does not change as density of nearby conspecifics rises above a few individuals.  相似文献   

15.
Queens of the fire ant, Solenopsis invicta Buren, produce several releaser and primer pheromones. Using bioassays, the ontogeny of three of these pheromones related to reproductive development was investigated. Virgin queens, in which the process of wing-shedding (dealation) serves as an indicator of the initiation of reproductive development, were studied. First, the production of two queen pheromones produced in the poison gland was examined. The pheromone responsible for initiation and maintenance of retinue formation, a releaser effect, was found to be produced in detectable quantities 2 days after dealation, at which time queens showed significant ovary development and many (30%) had started laying eggs. A primer pheromone that inhibits alate virgin queens from dealating was detected in queens 3 days following wing-shedding, when 80% of the queens were ovipositing. Second, I examined the onset of a pheromone of unknown glandular origin produced by reproductively active virgin queens which leads to their destruction in queenright colonies by stimulating workers to attack and kill them. This pheromone is secreted in quantities detectable by bioassay 2 days after dealation. Thus, in S. invicta, the ontogeny of three distinct queen pheromones is tightly linked with ovary development and initiation of egg laying. These results demonstrate reproductive and communicative functions are closely associated during the transition from potential to functional queen.  相似文献   

16.
Many ants use pheromone trails to organize collective foraging. Trail pheromones are produced from different glandular sources and they may be specific to a single species or shared by a number of species. I investigated the source of trail pheromones in three Monomorium ant species: Monomorium niloticum (Emery), M. najrane (Collingwood & Agosti) and M. mayri (Forel). I also examined the optimal concentration, longevity and specificity of the pheromones. M. niloticum and M. najrane secrete trail pheromone from their venom glands, whereas M. mayri secrete trail pheromone from its Dufour's gland. The optimum concentration was 1.0 and 0.1 gaster equivalent (GE)/30 cm trail in M. niloticum, 1.0 GE in M. najrane and 5.0 GE in M. mayri. Longevity of the optimal concentration was about one day for all species. There is no species specificity among the three species of Monomorium in their trail pheromone.  相似文献   

17.
The ponerine ant Ectatomma ruidum, though previously reported to possess only rudimentary recruitment ability, was found to lay chemical trails for mass recruitment to rich or difficult food sources. The pheromone originates from the Dufour's gland, a new source of trail pheromones in the primitive ant subfamily Ponerinae. During nest emigrations, E. ruidum practices stereotyped social carrying in the myrmicine mode. The discovery of this form of social carrying and of a recruitment pheromone in the Dufour's gland secretions support the hypothesis that the subfamily Myrmicinae is derived from an ectatommine ancestor. Other communication behaviors exhibited by E. ruidum include exchange of liquid food carried between the mandibles, chemical alarm communication, nest entrance marking, and an additional social carrying posture previously unknown in ants.  相似文献   

18.
Male moths respond to conspecific female-released pheromones with remarkable sensitivity and specificity, due to highly specialized chemosensory neurons in their antennae. In Antheraea silkmoths, three types of sensory neurons have been described, each responsive to one of three pheromone components. Since also three different pheromone binding proteins (PBPs) have been identified, the antenna of Antheraea seems to provide a unique model system for detailed analyzes of the interplay between the various elements underlying pheromone reception. Efforts to identify pheromone receptors of Antheraea polyphemus have led to the identification of a candidate pheromone receptor (ApolOR1). This receptor was found predominantly expressed in male antennae, specifically in neurons located beneath pheromone-sensitive sensilla trichodea. The ApolOR1-expressing cells were found to be surrounded by supporting cells co-expressing all three ApolPBPs. The response spectrum of ApolOR1 was assessed by means of calcium imaging using HEK293-cells stably expressing the receptor. It was found that at nanomolar concentrations ApolOR1-cells responded to all three pheromones when the compounds were solubilized by DMSO and also when DMSO was substituted by one of the three PBPs. However, at picomolar concentrations, cells responded only in the presence of the subtype ApolPBP2 and the pheromone (E,Z)-6,11-hexadecadienal. These results are indicative of a specific interplay of a distinct pheromone component with an appropriate binding protein and its related receptor subtype, which may be considered as basis for the remarkable sensitivity and specificity of the pheromone detection system.  相似文献   

19.
Alarm pheromones of social insects are best known for their role in the defence and maintenance of colony integrity. Previous studies with the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) demonstrate that the mandibular glands of workers (sterile females) and male and female sexuals produce an alarm pheromone, 2‐ethyl‐3,6‐dimethylpyrazine. The function of alarm pheromones in worker ants is well understood and divergent from the function of these compounds in the winged sexual forms. The present study quantifies the amount of pyrazine in the mandibular glands from male and female alate sexuals, as well as queens. Pyrazine production in female alates starts in the late pupal stage and increases until they reach mating flight‐ready maturity; however, after mating flight participation, the pyrazine level declines by >50%. Interestingly, mature male alates lose >85% of their mandibular gland pyrazine during mating flight activity. The results of the present study indicate that male and female sexuals use mandibular gland secretions for mating flight initiation and during mating flights. Furthermore, the ontogeny of mandibular gland products (pyrazine as the marker) from newly‐mated queens to mature colony queens shows a more than two‐fold increase in the amount of pyrazine by 6 months after mating. However, this is followed by a decline to trace amounts in mature colony queens (>2 years old), suggesting a function for mandibular gland products during colony development. Multifunctional use of social insect pheromones is well documented and data are reported in the present study suggesting new roles for mandibular gland products in fire ants.  相似文献   

20.
The effective communication of alarm can be critical for social animals so that they are able to deal with threats posed by predators and competitors. In the case of many of the most ecologically dominant, large‐colony ant species, these alarm responses are aggressive and coordinated by alarm pheromones, produced generally from the mandibular glands. In the present study, the alarm behaviour of two Neotropical army ant species is examined, the swarm raiding Eciton burchellii (Westwood) and the column raiding Eciton hamatum (Fabricius). Both species exhibit aggressive alarm responses in response to crushed heads, suggesting that the alarm pheromone is indeed produced by the mandibular glands in these ants. The most abundant component of the mandibular gland secretion, 4‐methyl‐3‐heptanone (10 µL on a rubber septum), stimulates a substantial alarm response, although this is less than the response to a single crushed head. This suggests that 4‐methyl‐3‐heptanone may be an alarm‐stimulating compound in Eciton. The alarm response of E. burchellii involves more workers than that of E. hamatum, although major workers play a much greater role in the response of the latter species. The differences in the alarm response of the two closely‐related species may relate to their foraging strategies, with E. burchellii relying more on quantity rather than the caste of ants responding and possibly using alarm pheromones for offensive as well as defensive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号