共查询到20条相似文献,搜索用时 8 毫秒
1.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub–Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance. 相似文献
2.
3.
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine. 相似文献
4.
Cerebral malaria is a serious and often fatal complication of Plasmodium falciparum infections. The precise mechanisms involved in the onset of neuropathology remain unknown, but parasite sequestration in the brain, metabolic disturbances and host immune responses are all thought to be involved. This review outlines the current state of knowledge of cerebral disease in humans, and discusses the contribution of studies of animal models to elucidation of the underlying mechanisms. 相似文献
5.
Rosetting is a property of many malaria parasite species that has been linked to virulence in the major species infecting humans, Plasmodium falciparum. Here, the basic properties of rosettes in the rodent malaria laboratory model, P. chabaudi, were studied with a view to future studies on the role of rosetting in malaria parasite virulence and transmission. Rosetting occurred in 14 out of the 15 P. chabaudi clones studied, varied consistently between clones, and ranged between 9 and 37% at full parasite maturity. Rosetting frequency markedly declined after the mouse reached peak parasitemia, possibly due to host immunity. Consistent with P. falciparum and P. vivax, rosettes in P. chabaudi were disrupted by treatment with trypsin and EDTA. However, P. chabaudi rosettes were insensitive to sulfated glycoconjugates (heparin, heparan sulfate and fucoidan). The molecular basis of rosetting in P. chabaudi is unknown at present, but the results suggest that the molecules involved may differ from those in human-infecting species. 相似文献
6.
In non fatal and synchronous P. chabaudi rodent malaria, we observed at the stage of parasitaemia peak, an alteration (50 % decrease) in LCAT activity. This decrease could be related partly to hepatic dysfunction, and mainly to circulating inhibitors released into blood from parasitized red blood cells at each end of a schizogonic cycle. This decrease in LCAT activity, at this step of the infection, accounts for part of the dyslipoproteinemia previously observed (i.e., increase in cholesterol and phospholipids into VLDL-LDL and decrease in the EC series and delayed conversion of Tg-rich lipoproteins into LDL-HDL. At a prepatent step of infection and after the parasitaemia peak, the alterations observed in LCAT activity, (respectively, increase and then decrease), would be related to similar changes in levels of cholesterol of HDL associated to complex changes in triacylglyceride transport and metabolism. 相似文献
7.
To maintain optimal intracellular concentrations of alkali-metal-cations, yeast cells use a series of influx and efflux systems. Nonconventional yeast species have at least three different types of efficient transporters that ensure potassium uptake and accumulation in cells. Most of them have Trk uniporters and Hak K(+)-H(+) symporters and a few yeast species also have the rare K(+) (Na(+))-uptake ATPase Acu. To eliminate surplus potassium or toxic sodium cations, various yeast species use highly conserved Nha Na(+) (K(+))/H(+) antiporters and Na(+) (K(+))-efflux Ena ATPases. The potassium-specific yeast Tok1 channel is also highly conserved among various yeast species and its activity is important for the regulation of plasma membrane potential. 相似文献
8.
The contribution of bromobenzene to our current understanding of chemically-induced toxicities 总被引:1,自引:0,他引:1
The metabolism and toxicity of bromobenzene has been investigated for well over one hundred years. The urinary excretion of mercapturic acids was first reported in 1879, in animals treated with bromobenzene. Bromobenzene has since proven to be a valuable tool in efforts to unravel the complexities involved in chemical- induced toxicities. For example, the importance of metabolic activation via the cytochrome(s) P-450; the role of glutathione in the detoxification of reactive metabolites; and the toxicological significance of covalent binding, enzyme inactivation and lipid peroxidation have all been illustrated in studies with bromobenzene. Thus, many of the principles involved in chemical-induced toxicity have been exemplified in studies with bromobenzene. These studies have provided substantial insight into the role of chemically reactive metabolites in the genesis of xenobiotic-mediated cytotoxicity. 相似文献
9.
Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei 总被引:1,自引:0,他引:1
G. PAUL CURLEY SUSAN M. O'DONOVAN JOHN MCNALLY MARGARET MULLALLY HELEN O'HARA ALICE TROY SUE-ANN O'CALLAGHAN JOHN P. DALTON 《The Journal of eukaryotic microbiology》1994,41(2):119-123
ABSTRACT. Using fluorogenic substrates and polyacrylamide gels we detected in cell-free extracts of Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei only a single aminopeptidase. A comparative study of the aminopeptidase activity in each extract revealed that the enzymes have similar specificities and kinetics, a near-neutral pH optima of 7.2 and are moderately thermophilic. Each has an apparent molecular weight of 80,000 ± 10,000, determined by high performance liquid chromatography on a calibrated SW500 column. Whilst the P. c. chabaudi and P. berghei activity co-migrate in native polyacrylamide gels, that of P. falciparum migrates more slowly. The three enzymes can be selectively inhibited by ortho -phenanthroline and are thus metallo-aminopeptidases; however, in contrast to other aminopeptidases the metal co-factor does not appear to be Zn2+ . 相似文献
10.
Okell LC Griffin JT Kleinschmidt I Hollingsworth TD Churcher TS White MJ Bousema T Drakeley CJ Ghani AC 《PloS one》2011,6(5):e20179
Mass treatment as a means to reducing P. falciparum malaria transmission was used during the first global malaria eradication campaign and is increasingly being considered for current control programmes. We used a previously developed mathematical transmission model to explore both the short and long-term impact of possible mass treatment strategies in different scenarios of endemic transmission. Mass treatment is predicted to provide a longer-term benefit in areas with lower malaria transmission, with reduced transmission levels for at least 2 years after mass treatment is ended in a scenario where the baseline slide-prevalence is 5%, compared to less than one year in a scenario with baseline slide-prevalence at 50%. However, repeated annual mass treatment at 80% coverage could achieve around 25% reduction in infectious bites in moderate-to-high transmission settings if sustained. Using vector control could reduce transmission to levels at which mass treatment has a longer-term impact. In a limited number of settings (which have isolated transmission in small populations of 1000-10,000 with low-to-medium levels of baseline transmission) we find that five closely spaced rounds of mass treatment combined with vector control could make at least temporary elimination a feasible goal. We also estimate the effects of using gametocytocidal treatments such as primaquine and of restricting treatment to parasite-positive individuals. In conclusion, mass treatment needs to be repeated or combined with other interventions for long-term impact in many endemic settings. The benefits of mass treatment need to be carefully weighed against the risks of increasing drug selection pressure. 相似文献
11.
W P Weidanz J R Kemp J M Batchelder F K Cigel M Sandor H C Heyde 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(12):7383-7388
gammadelta T cells have a crucial role in cell-mediated immunity (CMI) against P. chabaudi malaria, but delta-chain knockout (KO) (deltao/o) mice and mice depleted of gammadelta T cells with mAb cure this infection. To address the question of why mice deficient in gammadelta T cells resolve P. chabaudi infections, we immunized deltao/o mice by infection with viable blood-stage parasites. Sera from infection-immunized mice were tested for their ability to protect JHo/o, deltao/o double KO mice passively against P. chabaudi challenge infection. The onset of parasitemia was significantly delayed in mice receiving immune sera, compared with saline or uninfected serum controls. Immune sera were then fractionated into Ig-rich and Ig-depleted fractions by HPLC on a protein G column. Double KO mice were passively immunized with either fraction and challenged with P. chabaudi. The onset of parasitemia was significantly delayed in recipients of the Ig-rich fraction compared with recipients of the Ig-poor fraction of immune sera. We conclude that deltao/o mice, which are unable to activate CMI against the parasite, suppress P. chabaudi infection by a redundant Ab-mediated process. 相似文献
12.
Despite considerable success elucidating important immunological and resource-based mechanisms that control the dynamics of infection in some diseases, little is known about how differences in these mechanisms result in strain differences in patterns of pathogenesis. Using a combination of data and theory, we disentangle the role of ecological factors (e.g., resource abundance) in the dynamics of pathogenesis for the malaria species Plasmodium chabaudi in CD4+ T cell-depleted mice. We build a series of nested models to systematically test a number of potential regulatory mechanisms and determine the "best" model using statistical techniques. The best-fit model is further tested using an independent data set from mixed-clone competition experiments. We find that parasites preferentially invade older red blood cells even when they are more fecund in younger reticulocytes and that inoculum size has a strong effect on burst size in reticulocytes. Importantly, the results suggest that strain-specific differences in virulence arise from differences in red blood cell age-specific invasion rates and burst sizes, since these are lower for the less virulent strain, as well as from differences in levels of erythropoesis induced by each strain. Our analyses highlight the importance of model selection and validation for revealing new biological insights. 相似文献
13.
Fairhurst RM 《Cell host & microbe》2007,2(2):75-76
Clinical immunity to Plasmodium falciparum malaria takes years to develop and is never complete. One explanation for these observations is that antigenic variation enables malaria parasites to evade humoral immunity; another is that P. falciparum induces immune dysregulation, which inhibits the development of protective cellular immunity. Research described by D'Ombrain et al. in this Cell Host & Microbe issue probes how the parasite's main virulence factor PfEMP-1 might significantly alter human innate immune responses. 相似文献
14.
What stops parasites becoming ever more virulent? Conventional wisdom and most parasite-centred models of the evolution of virulence suppose that risk of host (and, hence, parasite) death imposes selection against more virulent strains. Here we selected for high and low virulence within each of two clones of the rodent malaria parasite Plasmodium chabaudi on the basis of between-host differences in a surrogate measure of virulence--loss of live weight post-infection. Despite imposing strong selection for low virulence which mimicked 50-75% host mortality, the low virulence lines increased in virulence as much as the high virulence lines. Thus, artificial selection on between-host differences in virulence was unable to counteract natural selection for increased virulence caused by within-host selection processes. The parasite''s asexual replication rate and number of sexual transmission forms also increased in all lines, consistent with evolutionary models explaining high virulence. An upper bound to virulence, though not the asexual replication rate, was apparent, but this bound was not imposed by host mortality. Thus, we found evidence of the factors assumed to drive evolution of increased virulence, but not those thought to counter this selection. 相似文献
15.
Background
Plasmodium chabaudi chabaudi can be considered as a rodent model of human malaria parasites in the genetic analysis of important characters such as drug resistance and immunity. Despite the availability of some genome sequence data, an extensive genetic linkage map is needed for mapping the genes involved in certain traits.Methods
The inheritance of 672 Amplified Fragment Length Polymorphism (AFLP) markers from two parental clones (AS and AJ) of P. c. chabaudi was determined in 28 independent recombinant progeny clones. These, AFLP markers and 42 previously mapped Restriction Fragment Length Polymorphism (RFLP) markers (used as chromosomal anchors) were organized into linkage groups using Map Manager software.Results
614 AFLP markers formed linkage groups assigned to 10 of 14 chromosomes, and 12 other linkage groups not assigned to known chromosomes. The genetic length of the genome was estimated to be about 1676 centiMorgans (cM). The mean map unit size was estimated to be 13.7 kb/cM. This was slightly less then previous estimates for the human malaria parasite, Plasmodium falciparumConclusion
The P. c. chabaudi genetic linkage map presented here is the most extensive and highly resolved so far available for this species. It can be used in conjunction with the genome databases of P. c chabaudi, P. falciparum and Plasmodium yoelii to identify genes underlying important phenotypes such as drug resistance and strain-specific immunity. 相似文献16.
Clementi E 《IUBMB life》2003,55(10-11):563-565
The observation, by Furchgott and Zawadzki, that a factor of short average life, released by endothelial cells accounted for vasodilation was the beginning of one of the most fascinating adventures in the recent history of science. The discovery that this released factor was nitric oxide had tremendous implications for our understanding not only of the homeostasis of the vascular tissue, but also of a variety of other biological processes ranging from synaptic plasticity to regulation of immune responses. This review article will lead the reader through the landmark events in this adventure, highlighting the fundamental role played by Salvador Moncada and his team. 相似文献
17.
Delić D Ellinger-Ziegelbauer H Vohr HW Dkhil M Al-Quraishy S Wunderlich F 《Steroids》2011,76(10-11):1204-1212
Blood-stage malaria of Plasmodium chabaudi is characterized by its responsiveness to testosterone (T): T suppresses development of protective immunity, whereas once acquired immunity is T-unresponsive. Here, we have analyzed the liver, a T target and lymphoid organ with anti-malaria activity, for its T-responsiveness of gene expression in immune mice. Using Affymetrix microarray technology, in combination with quantitative RT-PCR, we have identified (i) T-unresponsive expression of newly acquired mRNAs encoding diverse sequences of IgG- and IgM-antibodies, (ii) 24 genes whose expression has become T-unresponsive including those encoding the T(H)2 response promoting EHMT2 and the erythrocyte membrane protein band 7.2 STOM, (iii) T-unresponsive expression of mRNAs for the cytokines IL-1β, IL-6, TNFα, and IFNγ, as well as iNOS, which are even not inducible by infection, and (iv) 35 genes retaining their T-responsiveness, which include those encoding the infection-inducible acute phase proteins SAA1, SAA2, and ORM2 as well as those of liver metabolism which encode the T-downregulated female-prevalent enzymes CYP2B9, CYP2B13, CYP3A41, CYP7A1, and SULT2A2 and the T-upregulated male-prevalent enzymes CYP2D9, CYP7B1, UGT2B1, HSD3B2, HSD3B5, respectively. The mRNA of the latter T-metabolizing enzyme is even 5-fold increased by T, suggesting a decrease in the effective T concentrations in the liver of immune mice. Collectively, our data suggest that the liver, which has acquired a selective T-unresponsiveness of gene expression, contributes to the acquired T-unresponsive, antibody-mediated protective immunity to blood-stage malaria of P. chabaudi. 相似文献
18.
19.
Pannese E 《Archives italiennes de biologie》2007,145(2):111-115
A hundred years ago Camillo Golgi and Santiago Ramón y Cajal were awarded the Nobel Prize for Physiology or Medicine for their investigations on the structure of the nervous system. The work of Cajal is universally acknowledged, whereas Golgi's contribution is less well known. This article reviews the main achievements of Golgi in that field. In addition to Golgi's most important results, the errors he made in interpreting his own findings are examined. These errors contributed notably to a widespread neglect and underestimation of his important contributions to our understanding of the structure of the nervous system. 相似文献
20.
Petra Schneider Andrew S. Bell Derek G. Sim Aidan J. O'Donnell Simon Blanford Krijn P. Paaijmans Andrew F. Read Sarah E. Reece 《Proceedings. Biological sciences / The Royal Society》2012,279(1747):4677-4685
Here, we test the hypothesis that virulent malaria parasites are less susceptible to drug treatment than less virulent parasites. If true, drug treatment might promote the evolution of more virulent parasites (defined here as those doing more harm to hosts). Drug-resistance mechanisms that protect parasites through interactions with drug molecules at the sub-cellular level are well known. However, parasite phenotypes associated with virulence might also help parasites survive in the presence of drugs. For example, rapidly replicating parasites might be better able to recover in the host if drug treatment fails to eliminate parasites. We quantified the effects of drug treatment on the in-host survival and between-host transmission of rodent malaria (Plasmodium chabaudi) parasites which differed in virulence and had never been previously exposed to drugs. In all our treatment regimens and in single- and mixed-genotype infections, virulent parasites were less sensitive to pyrimethamine and artemisinin, the two antimalarial drugs we tested. Virulent parasites also achieved disproportionately greater transmission when exposed to pyrimethamine. Overall, our data suggest that drug treatment can select for more virulent parasites. Drugs targeting transmission stages (such as artemisinin) may minimize the evolutionary advantage of virulence in drug-treated infections. 相似文献