首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denessiouk KA  Johnson MS 《Proteins》2000,38(3):310-326
ATP is a ligand common to many proteins, yet it is unclear whether common recognition patterns do exist among the many different folds that bind ATP. Previously, it was shown that cAMP-dependent protein kinase, D-Ala:D-Ala ligase and the alpha-subunit of the alpha 2 beta 2 ribonucleotide reductase do share extensive common structural elements for ATP recognition although their folds are different. Here, we have made a survey of structures that bind ATP and compared them with the key features seen in these three proteins. Our survey shows that 12 different fold types share a specific recognition pattern for the adenine moiety, and 8 of these folds have a common structural framework for recognition of the AMP moiety of the ligand. The common framework consists of a tripeptide segment plus three additional residues, which provides similar polar and hydrophobic interactions between the protein and mononucleotide. Consensus interactions are represented by four key hydrogen bonds present in each fold type. Two of these four hydrogen bonds, together with three aliphatic residues, form a specific recognition pattern for the adenine moiety in all 12 folds. These similarities point to a structural-functional requirement shared by these different mononucleotide-binding proteins that represent at this time 28% of the adenine mononucleotide complexes found in the Brookhaven Protein Data Bank.  相似文献   

2.
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.  相似文献   

3.
4.
5.
6.
The ultraviolet resonance Raman (UV RR) spectra of functional ATP/membrane-bound Na+K+-ATPase complexes have been obtained. The substrate binding in the enzyme active site has been shown to be accompanied with significant changes in the electronic vibrational structure of the adenine ring. From the spectral analysis of ATP, 8-Br-ATP and 6-NHMe-adenine at various pH values the conclusion was made that N1 and the NH2, group and, probably, N7 of the substrate adenine part, interact with the protein surroundings via hydrogen bonds.  相似文献   

7.
The RNA recognition motif (RRM) binds to single-stranded RNA target sites of diverse sequences and structures. A conserved mode of base recognition by the RRM involves the simultaneous formation of a network of hydrogen bonds with the base functional groups and a stacking interaction between the base and a highly conserved aromatic amino acid. We have investigated the energetic contribution of the functional groups involved in the recognition of an essential adenine, A6, in stem–loop 2 of U1 snRNA by the N-terminal RRM of the U1A protein. Previously, we found that elimination of individual hydrogen bond donors and acceptors on A6 destabilized the complex by 0.8–1.9 kcal/mol, while mutation of the aromatic amino acid (Phe56) that stacks with A6 to Ala destabilized the complex by 5.5 kcal/mol. Here we continue to probe the contribution of A6 to complex stability through mutation of both the RNA and protein. We have removed two hydrogen-bonding functional groups by introducing a U1A mutation, Ser91Ala, and replacing A6 with tubercidin, purine, or 1-deazaadenine. We find that the complex is destabilized an additional 1.2–2.6 kcal/mol by the elimination of the second hydrogen bond donor or acceptor. Surprisingly, deletion of all of the functional groups involved in hydrogen bonds with the U1A protein by substituting adenine with 4-methylindole reduced the binding free energy by only 2.0 kcal/mol. Experiments with U1A proteins containing mutations of Phe56 suggested that improved stacking interactions due to the greater hydrophobicity of 4-methylindole than adenine may be partly responsible for the small destabilization of the complex upon substitution of 4-methylindole for A6. The data imply that hydrophobic interactions can compensate energetically for the disruption of the complex hydrogen-bonding network between nucleotide and protein.  相似文献   

8.
The R-state structures of the ATP and CTP complexes of aspartate carbamoyltransferase ligated with phosphonoacetamide and malonate have been determined at 2.8-A resolution and neutral pH. These structures were solved by the method of molecular replacement and were refined to crystallographic residuals between 0.167 and 0.182. The triphosphate, the ribose, and the purine and pyrimidine moieties of ATP and CTP interact with similar regions of the allosteric domain of the regulatory dimer. ATP and CTP relatively increase and decrease the size of the allosteric site in the vicinity of the base, respectively. For both CTP and ATP at pH 7, the gamma-phosphates are bound to His20 and are also near Lys94, while the alpha-phosphates interact exclusively with Lys94. The 2'-hydroxyls of both CTP and ATP are near the amino group of Lys60. The pyrimidine ring of CTP makes specific hydrogen bonds at the allosteric site: the NH2 group donates hydrogen bonds to the main-chain carbonyls of Ile12 and Tyr89 and the pyrimidine ring carbonyl oxygen accepts a hydrogen bond from the amino group of Lys60; the nitrogen at position 3 in the pyrimidine ring is hydrogen bonded to a main-chain NH group of Ile12. The purine ring of ATP also makes numerous interactions with residues at the allosteric site: the purine NH2 (analogous to the amino group of CTP) donates a hydrogen bond to the main-chain carbonyl oxygen of Ile12, the N3 nitrogen interacts with the amino group of Lys60, and the N1 nitrogen hydrogen bonds to the NH group of Ile12. The binding of CTP and ATP to the allosteric site in the presence of phosphonoacetamide and malonate does not dramatically alter the structure of the allosteric binding site or of the allosteric domain. Nonetheless, in the CTP-ligated structure, the average separation between the catalytic trimers decreases by approximately 0.5 A, indicating a small shift of the quaternary structure toward the T state. In the CTP- and ATP-ligated R-state structures, the binding and occupancy of phosphonoacetamide and malonate are similar and the structures of the active sites are similar at the current resolution of 2.8 A.  相似文献   

9.
The new integrase strand transfer inhibitor (INSTI) dolutegravir (DTG) displays limited cross-resistance with older drugs of this class and selects for the R263K substitution in treatment-experienced patients. We performed tissue culture selections with DTG, using viruses resistant to older INSTIs and infectivity and resistance assays, and showed that the presence of the E92Q or N155H substitution was compatible with the emergence of R263K, whereas the G140S Q148R, E92Q N155H, G140S, Y143R, and Q148R substitutions were not.  相似文献   

10.
Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Virologic failure during treatment with raltegravir, the first effective drug targeting HIV integrase, is associated with two exclusive pathways involving either Q148H/R/K, G140S/A or N155H mutations. We carried out a detailed analysis of the molecular and structural effects of these mutations. We observed no topological change in the integrase core domain, with conservation of a newly identified Ω‐shaped hairpin containing the Q148 residue, in particular. In contrast, the mutations greatly altered the specificity of DNA recognition by integrase. The native residues displayed a clear preference for adenine, whereas the mutant residues strongly favored pyrimidines. Raltegravir may bind to N155 and/or Q148 residues as an adenine bioisoster. This may account for the selected mutations impairing raltegravir binding while allowing alternative DNA recognition by integrase. This study opens up new opportunities for the design of integrase inhibitors active against raltegravir‐resistant viruses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The crystal structures of the full-length Herpes simplex virus type 1 thymidine kinase in its unligated form and in a complex with an adenine analogue have been determined at 1.9 A resolution. The unligated enzyme contains four water molecules in the thymidine pocket and reveals a small induced fit on substrate binding. The structure of the ligated enzyme shows for the first time a bound adenine analogue after numerous complexes with thymine and guanine analogues have been reported. The adenine analogue constitutes a new lead compound for enzyme-prodrug gene therapy. In addition, the structure of mutant Q125N modifying the binding site of the natural substrate thymidine in complex with this substrate has been established at 2.5 A resolution. It reveals that neither the binding mode of thymidine nor the polypeptide backbone conformation is altered, except that the two major hydrogen bonds to thymidine are replaced by a single water-mediated hydrogen bond, which improves the relative acceptance of the prodrugs aciclovir and ganciclovir compared with the natural substrate. Accordingly, the mutant structure represents a first step toward improving the virus-directed enzyme-prodrug gene therapy by enzyme engineering.  相似文献   

13.
《BBA》2019,1860(8):679-687
Functioning as a nanomotor, ATP synthase plays a vital role in the cellular energy metabolism. Interactions at the rotor and stator interface are critical to the energy transmission in ATP synthase. From mutational studies, we found that the γC87K mutation impairs energy coupling between proton translocation and nucleotide synthesis/hydrolysis. An additional glutamine mutation at γR242 (γR242Q) can restore efficient energy coupling to the γC87K mutant. Arrhenius plots and molecular dynamics simulations suggest that an extra hydrogen bond could form between the side chains of γC87K and βTPE381 in the γC87K mutant, thus impeding the free rotation of the rotor complex. In the enzyme with γC87K/γR242Q double mutations, the polar moiety of γR242Q side chain can form a hydrogen bond with γC87K, so that the amine group in the side chain of γC87K will not hydrogen-bond with βE381. As a conclusion, the intra-subunit interaction between positions γC87 and γR242 modulates the energy transmission in ATP synthase. This study should provide more information of residue interactions at the rotor and stator interface in order to further elucidate the energetic mechanism of ATP synthase.  相似文献   

14.
Site-directed mutagenesis was performed on Glu143, an essential amino acid in Lactobacillus casei folylpolyglutamate synthetase (FPGS) and the structurally equivalent residue, Glu146, in Escherichia coli FPGS. Glu143 is positioned near the P-loop and interacts with the Mg(2+) of Mg NTP-binding proteins. We have solved the structure of the E143A mutant of L. casei FPGS in the presence of AMPPCP and Mg(2+). The structure showed a water molecule at the place where Mg(2+) bound to the wild type enzyme. Mutant proteins E143A, and even E143D and E143Q with conservative mutations, lacked enzyme activity and failed to complement the methionine auxotrophy of the E. coli folC mutant SF4, showing that Glu143 is an essential residue. Both the L. casei and the E. coli FPGS mutant proteins bound methylene-tetrahydrofolate diglutamate and dihydropteroate normally. The E. coli E146Q mutant FPGS bound ADP with the same affinity as the wild type enzyme but bound ATP with much lower affinity and had higher ATPase activity than the wild type enzyme. The mutant enzyme was defective in forming the acyl-phosphate reaction intermediate from ATP and dihydropteroate. The E. coli FPGS requires activation by dihydropteroate or tetrahydrofolate binding to allow full activity. In the absence of a pteroate substrate, only 30% of the total enzyme binds ATP. We suggest that dihydropteroate causes a conformational change to allow increased ATP binding. The mutant enzyme was similarly activated by dihydropteroate resulting in increased ADP binding.  相似文献   

15.
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC?? > 50 μM), indirubin-3'-oxime (IC?? = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schr?dinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.  相似文献   

16.
A series of dihydroxyphenylpyrazole compounds were identified as a unique class of reversible Hsp90 inhibitors. The crystal structures for two of the identified compounds complexed with the N-terminal ATP binding domain of human Hsp90alpha were determined. The dihydroxyphenyl ring of the compounds fits deeply into the adenine binding pocket with the C2 hydroxyl group forming a direct hydrogen bond with the side chain of Asp93. The pyrazole ring forms hydrogen bonds to the backbone carbonyl of Gly97, the hydroxyl group of Thr184 and to a water molecule, which is present in all of the published HSP90 structures. One of the identified compounds (G3130) demonstrated cellular activities (in Her-2 degradation and activation of Hsp70 promoter) consistent with the inhibition of cellular Hsp90 functions.  相似文献   

17.
Mutating arginine 52 to glutamine (R52Q) in photoactive yellow protein (PYP) increases the pK(a) of the chromophore by 1 pH unit. The structure of the R52Q PYP mutant was determined by X-ray crystallography and was compared to the structure of wild-type PYP to assess the role of R52 in pK(a) regulation. The essential differences between R52Q and the wild type were confined to the loop region containing the 52nd residue. While the hydrogen bonds involving the chromophore were unchanged by the mutation, removing the guanidino group generated a cavity near the chromophore; this cavity is occupied by two water molecules. In the wild type, R52 forms hydrogen bonds with T50 and Y98; these hydrogen bonds are lost in R52Q. Q52 is linked to Y98 by hydrogen bonding through the two water molecules. R52 acts as a lid on the chromophore binding pocket and controls the accessibility of the exterior solvent and the pK(a) of the chromophore. R52 is found to flip out during the formation of PYP(M). The result of this movement is quite similar to the altered structure of R52Q. Thus, we propose that conformational changes at R52 are partly responsible for pK(a) regulation during the photocycle.  相似文献   

18.
Loganathan D  Aich U 《Glycobiology》2006,16(4):343-348
Elucidation of the intra- and intermolecular carbohydrate-protein interactions would greatly contribute toward obtaining a better understanding of the structure-function correlations of the protein-linked glycans. The weak interactions involving C-H...O have recently been attracting immense attention in the domain of biomolecular recognition. However, there has been no report so far on the occurrence of C-H...O hydrogen bonds in the crystal structures of models and analogs of N-glycoproteins. We present herein an analysis of C-H...O interactions in the crystal structures of all N-glycoprotein linkage region models and analogs. The study reveals a cooperative network of bifurcated hydrogen bonds consisting of N-H...O and C-H...O interactions seen uniquely for the models. The cooperative network consists of two antiparallel chains of bifurcated hydrogen bonds, one involving N1-H, C2'-H and O1' of the aglycon moiety and the other involving N2-H, C1-H and O1' of the sugar. Such bifurcated hydrogen bonds between the core glycan and protein are likely to play an important role in the folding and stabilization of proteins.  相似文献   

19.
No analogous nucleoside triphosphate was found which acts as well as ATP in binding to and supporting catalysis of leucyl-tRNA synthetase from Escherichia coli MRE 600. However, there are numerous nucleotides which are able to replace ATP, but with lower efficiency. The 6-amino group of the adenine ring and the 2'-hydroxyl group of the ribose ring are essential for binding and catalytic activity. Alterations in the triphosphate moiety of the molecule can cause drastic changes in Km and/or Vmax, whereas alterations of the imidazole ring and substitutions at the 8-position of the adenine ring cause only minor losses of catalytic activity.  相似文献   

20.
P-glycoprotein, also known as multidrug resistance protein 1 or ABCB1, can export a wide range of chemically unrelated compounds, including chemotherapeutic drugs. ABCB1 consists of two transmembrane domains that form the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that energize substrate transport by ATP binding and hydrolysis. ATP binding triggers dimerization of the NBDs, which switches the transporter from an inward facing to an outward facing transmembrane domain conformation. We performed MD simulations to study the dynamic behavior of the NBD dimer in the presence or absence of nucleotides. In the apo configuration, the NBDs were overall attractive to each other as shown in the potential of mean force profile, but the energy well was shallow and broad. In contrast, a sharp and deep energy minimum (~?42 kJ/mol) was found in the presence of ATP, leading to a well-defined conformation. Motif interaction network analyses revealed that ATP stabilizes the NBD dimer by serving as the central hub for interdomain connections. Simulations showed that forces promoting dimerization are multilayered, dominated by electrostatic interactions between the nucleotide and conserved amino acids of the signature sequence and the Walker A motif. In addition, direct and water-bridged hydrogen bonds between NBDs provided conformation-defining interactions. Importantly, we characterized a largely unrecognized but essential contribution from hydrophobic interactions between the adenine moiety of the nucleotides and a hydrophobic surface of the X-loop to the stabilization of the nucleotide-bound NBD dimer. These hydrophobic interactions lead to a sharp energy minimum, thereby conformationally restricting the nucleotide-bound state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号