首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

2.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

3.
Cells counteract the adverse effects of chromosome breakage by activating the DNA damage response (DDR), which entails a coordinated series of events that regulate cell cycle progression and repair of DNA lesions. The packaging of genomic DNA into condensed, often inaccessible chromatin severely complicates efficient DNA damage repair in living cells. Recent studies implicate a large number of chromatin-modifying enzymes in the DDR, suggesting a stepwise model in which chromatin is continually reconfigured to accommodate the association and action of repair factors during the different stages of the DDR. Emerging evidence suggests that the histone ubiquitin ligases RNF8/RNF168 act in concert with ATP-dependent chromatin remodelling enzymes to orchestrate the signalling and repair of DNA lesions in specific chromatin topologies.  相似文献   

4.
The rapid ubiquitination of chromatin surrounding DNA double-stranded breaks (DSB) drives the formation of large structures called ionizing radiation-induced foci (IRIF), comprising many DNA damage response (DDR) proteins. This process is regulated by RNF8 and RNF168 ubiquitin ligases and is thought to be necessary for DNA repair and activation of signaling pathways involved in regulating cell cycle checkpoints. Here we demonstrate that it is possible to interfere with ubiquitin-dependent recruitment of DDR factors by expressing proteins containing ubiquitin binding domains (UBDs) that bind to lysine 63-linked polyubiquitin chains. Expression of the E3 ubiquitin ligase RAD18 prevented chromatin spreading of 53BP1 at DSBs, and this phenomenon was dependent upon the integrity of the RAD18 UBD. An isolated RAD18 UBD interfered with 53BP1 chromatin spreading, as well as other important DDR mediators, including RAP80 and the BRCA1 tumor suppressor protein, consistent with the model that the RAD18 UBD is blocking access of proteins to ubiquitinated chromatin. Using the RAD18 UBD as a tool to impede localization of 53BP1 and BRCA1 to repair foci, we found that DDR signaling, DNA DSB repair, and radiosensitivity were unaffected. We did find that activated ATM (S1981P) and phosphorylated SMC1 (a specific target of ATM) were not detectable in DNA repair foci, in addition to upregulated homologous recombination repair, revealing 2 DDR responses that are dependent upon chromatin spreading of certain DDR factors at DSBs. These data demonstrate that select UBDs containing targeting motifs may be useful probes in determining the biological significance of protein–ubiquitin interactions.  相似文献   

5.
RBX1 (RING box protein 1), also known as ROC1 (Regulator of Cullin 1), is an essential component of SCF (Skp1/Cullins/F-box) E3 ubiquitin ligases, which target diverse proteins for proteasome-mediated degradation. Our recent study showed that RBX1 silencing triggered a DNA damage response (DDR) leading to G(2)-M arrest, senescence, and apoptosis, with the mechanism remaining elusive. Here, we show that, in human cancer cells, RBX1 silencing causes the accumulation of DNA replication licensing proteins CDT1 and ORC1, leading to DNA double-strand breaks, DDR, G(2) arrest, and, eventually, aneuploidy. Whereas CHK1 activation by RBX1 silencing is responsible for the G(2) arrest, enhanced DNA damage renders cancer cells more sensitive to radiation. In Caenorhabditis elegans, RBX-1 silencing causes CDT-1 accumulation, triggering DDR in intestinal cells, which is largely abrogated by simultaneous CDT-1 silencing. RBX-1 silencing also induces lethality during development of embryos and in adulthood. Thus, RBX1 E3 ligase is essential for the maintenance of mammalian genome integrity and the proper development and viability in C. elegans.  相似文献   

6.
The signaling cascade initiated in response to DNA double-strand breaks (DSBs) has been extensively investigated in interphase cells. Here, we show that mitotic cells treated with DSB-inducing agents activate a “primary” DNA damage response (DDR) comprised of early signaling events, including activation of the protein kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK), histone H2AX phosphorylation together with recruitment of mediator of DNA damage checkpoint 1 (MDC1), and the Mre11–Rad50–Nbs1 (MRN) complex to damage sites. However, mitotic cells display no detectable recruitment of the E3 ubiquitin ligases RNF8 and RNF168, or accumulation of 53BP1 and BRCA1, at DSB sites. Accordingly, we found that DNA-damage signaling is attenuated in mitotic cells, with full DDR activation only ensuing when a DSB-containing mitotic cell enters G1. Finally, we present data suggesting that induction of a primary DDR in mitosis is important because transient inactivation of ATM and DNA-PK renders mitotic cells hypersensitive to DSB-inducing agents.  相似文献   

7.
Hannss R  Dubiel W 《FEBS letters》2011,585(18):2845-2852
The COP9 signalosome (CSN) is a platform for protein communication in eukaryotic cells. It has an intrinsic metalloprotease that removes the ubiquitin (Ub)-like protein Nedd8 from cullins. CSN-mediated deneddylation regulates culling-RING Ub ligases (CRLs) and controls ubiquitination of proteins involved in DNA damage response (DDR). CSN forms complexes with CRLs containing cullin 4 (CRL4s) which act on chromatin playing crucial roles in DNA repair, checkpoint control and chromatin remodeling. Furthermore, via associated kinases the CSN controls the stability of DDR effectors such as p53 and p27 and thereby the DDR outcome. DDR is a protection against cancer and deregulation of CSN function causes cancer making it an attractive pharmacological target. Here we review current knowledge on CSN function in DDR.  相似文献   

8.
DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.  相似文献   

9.
The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.  相似文献   

10.
Defective DNA damage response (DDR) is frequently associated with carcinogenesis. Abrogation of DDR leads to chromosomal instability, a most common characteristic of tumors. However, the molecular mechanisms underlying regulation of DDR are still elusive. The ubiquitin ligase RNF8 mediates the ubiquitination of γH2AX and recruits 53BP1 and BRCA1 to DNA damage sites which promotes DDR and inhibits chromosomal instability. Though RNF8 is a key player involved in DDR, regulation of its expression is still poorly understood. Here, we show that miR-214 could abrogate DDR by repressing RNF8 expression through direct binding to 3′-untranslated region (3′ UTR) of RNF8 mRNA in human ovarian cancer cells. Antagonizing miR-214 by expressing its inhibitors in A2780 cells significantly increased RNF8 expression and thus promoted DNA damage repair. Consistent with the role of miR-214 in regulating RNF8 expression, the impaired DNA repair induced by miR-214 overexpression can be rescued by overexpressing RNF8 mRNA lacking the 3′ UTR. Together, our results indicate that down-regulation of RNF8 mediated by miR-214 impedes DNA damage response to induce chromosomal instability in ovarian cancers, which may facilitate the understanding of mechanisms underlying chromosomal instability.  相似文献   

11.
Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO‐dependent DNA damage response (UbS‐DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N‐terminal region of BLM and subsequent BLM binding to the ubiquitin‐interacting motifs of RAP80. Furthermore, we show that this mechanism of BLM relocalization is essential for BLM's ability to suppress excessive/uncontrolled HR at stalled replication forks. Unexpectedly, we also uncovered a requirement for RNF8‐dependent ubiquitylation of BLM and PML for maintaining the integrity of PML‐associated nuclear bodies and as a consequence the localization of BLM to these structures. Lastly, we identified a novel role for RAP80 in preventing proteasomal degradation of BLM in unstressed cells. Taken together, these data highlight an important biochemical link between the UbS‐DDR and BLM‐dependent pathways involved in maintaining genome stability.  相似文献   

12.
In cancer patients, treatment modalities like chemotherapy and radiation exert their anticancer effects by inducing DNA damage. The cancer cells can survive under genotoxic stress by inducing DNA damage response (DDR) or can undergo cell death. The process of autophagy is emerging as crucial regulator of cell survival during different stress conditions. Post translational modification through ubiquitin plays an essential role in DDR during genotoxic stress conditions. Ubiquitin ligases regulate autophagy and cell death pathways however their role during genotoxic stress conditions is not understood. In the current study we identified TRIM8, RING E3 Ligase, as a novel regulator of autophagy during DDR. TRIM8 regulates lysosomal biogenesis and autophagy flux. The turnover of TRIM8 is high and is stabilized during genotoxic stress conditions. TRIM8 regulated autophagy is essential for its cytoprotective role during genotoxic stress induced cell death. TRIM8 stabilizes the turnover of XIAP during genotoxic stress and forms complex with XIAP and caspase-3 to inhibit its activation in presence of etoposide. TRIM8 mediated autophagy promotes degradation of cleaved caspase-3 subunits. This study described TRIM8, as a novel regulator of DDR-autophagy crosstalk, which may play role in survival of cancer cells in presence of genotoxic agents.  相似文献   

13.
Histone ubiquitination plays a vital role in DNA damage response (DDR), which is important for maintaining genomic integrity in eukaryotic cells. In DDR, ubiquitination of histone H2A and γH2AX by the concerted action of ubiquitin (Ub) ligases, RNF168 and RNF8, generates a cascade of ubiquitination signaling. However, little is known about deubiquitinating enzymes (DUBs) that may catalyze the removal of Ub from these histones. This study demonstrated that USP3, an apparent DUB for mono-ubiquitinated H2A, is indeed the enzyme for deubiquitinating Ub conjugates of γH2AX and H2A from lysine sites, where the ubiquitination is initiated by RNF168. Here, we showed that ectopic expression of USP3 led to the deubiquitination of both H2A and γH2AX in response to UV-induced DNA damage. Moreover, ectopic USP3 expression abrogated FK2 antibody-reactive Ub-conjugate foci, which co-localize with damage-induced γH2AX foci. In addition, USP3 overexpression impaired the accumulation of downstream repair factors BRCA1 and 53BP1 at the damage sites in response to both UV and γ-irradiation. We further identified that the USP3 removes Ub at lysine 13 and 15 of H2A and γH2AX, as well as lysine 118 and 119 of H2AX in response to DNA damage. Taken together, the results suggested that USP3 is a negative regulator of ubiquitination signaling, counteracting RNF168- and RNF8-mediated ubiquitination.  相似文献   

14.
The ubiqutin-proteasome system is the major pathway by which cells target proteins for degradation in a specific manner. The E3 ubiquitin ligase, which brings targeted proteins (substrates) and activated ubiquitin in close proximity, enabling covalent conjugation of ubiquitin to the substrate, is an essential component of this system. Of the E3 ligases, the cullin (CUL) ligases are of high interest because of their capacity to form multiple distinct E3 complexes to ubiquitinate a potentially large number of substrates. Of the six closely related cullins, very little is known about how specific substrates are recruited to CUL4-dependent ligases. A recent paper in Nature Cell Biology may shed some light on this issue as well as on the function of DDB1, a damaged-DNA binding protein that has long been associated with DNA repair.  相似文献   

15.
DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. In response to DSBs, cells initiate a complex response that minimizes their deleterious impact on cellular and organismal physiology. In this review, we discuss the discovery of a regulatory ubiquitylation system that modifies the chromatin that surrounds DNA lesions. This pathway is under the control of RNF8 and RNF168, two E3 ubiquitin ligases that cooperate with UBC13 to promote the relocalization of 53BP1 and BRCA1 to sites of DNA damage. RNF8 and RNF168 orchestrate the recruitment of DNA damage response proteins by catalyzing the ubiquitylation of H2A-type histones and the formation of K63-linked ubiquitin chains on damaged chromatin. Finally, we identify some unresolved issues raised by the discovery of this pathway and discuss the implications of DNA damage-induced ubiquitylation in human disease and development.  相似文献   

16.
A loss of T cell tolerance underlies the development of most autoimmune diseases. The design of therapeutic strategies to reinstitute immune tolerance, however, is hampered by uncertainty regarding the molecular mechanisms involved in the inactivation of potentially autoreactive T cells. Recently, E3 ubiquitin ligases have been shown to mediate the development of a durable state of unresponsiveness in T cells called clonal anergy. In this review, we will discuss the mechanisms used by E3 ligases to control the activation of T cells and prevent the development of autoimmunity.  相似文献   

17.
Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular processes such as activation of NFκB inflammatory response and DNA damage repair. We highlight the E2 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis.  相似文献   

18.
In response to DNA damage, cells activate a phosphorylation-based signaling cascade known as the DNA damage response (DDR). One of the main outcomes of DDR activation is inhibition of cyclin-dependent kinase (Cdk) activity to restrain cell cycle progression until lesions are healed. Recent studies have revealed a reverse connection by which Cdk activity modulates processing of DNA break ends and DDR activation. However, the specific contribution of individual Cdks to this process remains poorly understood. To address this issue, we have examined the DDR in murine cells carrying a defined set of Cdks. Our results reveal that genome maintenance programs of postreplicative cells, including DDR, are regulated by the overall level of Cdk activity and not by specific Cdks.  相似文献   

19.
The E3 ubiquitin ligase RNF168 is a DNA damage response (DDR) factor that promotes monoubiquitination of H2A/H2AX at K13/15, facilitates recruitment of other DDR factors (e.g. 53BP1) to DNA damage, and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. We have examined the domains of RNF168 important for these DDR events, including chromosomal HR that is induced by several nucleases (I-SceI, CAS9-WT and CAS9-D10A), since the inducing nuclease affects the relative frequency of distinct repair outcomes. We found that an N-terminal fragment of RNF168 (1-220/N221*) efficiently inhibits HR induced by each of these nucleases in BRCA1 depleted cells, and promotes recruitment of 53BP1 to DNA damage and H2AX monoubiquitination at K13/15. Each of these DDR events requires a charged residue in RNF168 (R57). Notably, RNF168-N221* fails to self-accumulate into ionizing radiation induced foci (IRIF). Furthermore, expression of RNF168 WT and N221* can significantly bypass the role of another E3 ubiquitin ligase, RNF8, for inhibition of HR in BRCA1 depleted cells, and for promotion of 53BP1 IRIF. We suggest that the ability for RNF168 to promote H2A/H2AX monoubiquitination and 53BP1 IRIF, but not RNF168 self-accumulation into IRIF, is important for inhibition of HR in BRCA1 deficient cells.  相似文献   

20.
Recent reports have made important revelations, uncovering direct regulation of DNA damage response (DDR)-associated proteins and chromatin ubiquitination (Ubn) by macroautophagy/autophagy. Here, we report a previously unexplored connection between autophagy and DDR, via a deubiquitnase (DUB), USP14. Loss of autophagy in prostate cancer cells led to unrepaired DNA double-strand breaks (DSBs) as indicated by persistent ionizing radiation (IR)-induced foci (IRIF) formation for γH2AFX, and decreased protein levels and IRIF formation for RNF168, an E3-ubiquitin ligase essential for chromatin Ubn and recruitment of critical DDR effector proteins in response to DSBs, including TP53BP1. Consistently, RNF168-associated Ubn signaling and TP53BP1 IRIF formation were reduced in autophagy-deficient cells. An activity assay identified several DUBs, including USP14, which showed higher activity in autophagy-deficient cells. Importantly, inhibiting USP14 could overcome DDR defects in autophagy-deficient cells. USP14 IRIF formation and protein stability were increased in autophagy-deficient cells. Co-immunoprecipitation and colocalization of USP14 with MAP1LC3B and the UBA-domain of SQSTM1 identified USP14 as a substrate of autophagy and SQSTM1. Additionally, USP14 directly interacted with RNF168, which depended on the MIU1 domain of RNF168. These findings identify USP14 as a novel substrate of autophagy and regulation of RNF168-dependent Ubn and TP53BP1 recruitment by USP14 as a critical link between DDR and autophagy. Given the role of Ubn signaling in non-homologous end joining (NHEJ), the major pathway for repair of IR-induced DNA damage, these findings provide unique insights into the link between autophagy, DDR-associated Ubn signaling and NHEJ DNA repair.

Abbreviations: ATG7: autophagy related 7; CQ: chloroquine; DDR: DNA damage response; DUB: deubiquitinase; HR: homologous recombination; IR: ionizing radiation; IRIF: ionizing radiation-induced foci; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MIU1: motif interacting with ubiquitin; NHEJ: non homologous end-joining; PCa: prostate cancer; TP53BP1/53BP1: tumor protein p53 binding protein 1; RNF168: ring finger protein 168; SQSTM1/p62 sequestosome 1; γH2AFX/γH2AX: H2A histone family member X: phosphorylated, UBA: ubiquitin-associated; Ub: ubiquitin; Ubn: ubiquitination; USP14: ubiquitin specific peptidase 14.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号