首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind approximately 30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg(2+), and weakened in the absence of Ca(2+) but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val(2322), located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val(2322) for leucine (as in IP(3)R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val(2322) for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as alpha-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP(3)R isoforms. A chimeric RyR3/IP(3)R1, containing the core of the FKBP12-binding site of IP(3)R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP(3)Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca(2+)-release channels. Structural differences in the FKBP-binding site of RyRs and IP(3)Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP(3)Rs.  相似文献   

2.
Structural characterization of the RyR1-FKBP12 interaction   总被引:1,自引:0,他引:1  
The 12 kDa FK506-binding protein (FKBP12) constitutively binds to the calcium release channel RyR1. Removal of FKBP12 using FK506 or rapamycin causes an increased open probability and an increase in the frequency of sub-conductance states in RyR1. Using cryo-electron microscopy and single-particle image processing, we have determined the 3D difference map of FKBP12 associated with RyR1 at 16 A resolution that can be fitted with the atomic model of FKBP12 in a unique orientation. This has allowed us to better define the surfaces of close apposition between FKBP12 and RyR1. Our results shed light on the role of several FKBP12 residues that had been found critical for the specificity of the RyR1-FKBP12 interaction. As predicted from previous immunoprecipitation studies, our results suggest that Gln3 participates directly in this interaction. The orientation of RyR1-bound FKBP12, with part of its FK506 binding site facing towards RyR1, allows us to propose how FK506 is involved in the dissociation of FKBP12 from RyR1.  相似文献   

3.
FK506-binding protein (FKBP12) has been found to be associated with the skeletal muscle ryanodine receptor (RyR1) (calcium release channel), whereas FKBP12.6, a novel isoform of FKBP, is selectively associated with the cardiac ryanodine receptor (RyR2). For both RyRs, the stoichiometry is 4 FKBP/RyR. Although FKBP12.6 differs from FKBP12 by only 18 of 108 amino acids, FKBP12.6 selectively binds to RyR2 and exchanges with bound FKBP12.6 of RyR2, whereas both FKBP isoforms bind to RyR1 and exchange with bound FKBP12 of RyR1. To assess the amino acid residues of FKBP12.6 that are critical for selective binding to RyR2, the residues of FKBP12.6 that differ with FKBP12 were mutated to the respective residues of FKBP12. RyR2 of cardiac sarcoplasmic reticulum, prelabeled by exchange with [35S]FKBP12.6, was used as assay system for binding/exchange with the mutants. The triple mutant (Q31E/N32D/F59W) of FKBP12.6 was found to lack selective binding to the cardiac RyR2, comparable with that of FKBP12.0. In complementary studies, mutations of FKBP12 to the three critical amino acids of FKBP12.6, conferred selective binding to RyR2. Each of the FKBP12.6 and FKBP12 mutants retained binding to the skeletal muscle RyR1. We conclude that three amino acid residues (Gln31, Asn32, and Phe59) of human FKBP12.6 account for the selective binding to cardiac RyR2.  相似文献   

4.
FKBP12 binding modulates ryanodine receptor channel gating   总被引:2,自引:0,他引:2  
The ryanodine receptor (RyR1)/calcium release channel on the sarcoplasmic reticulum of skeletal muscle is comprised of four 565,000-dalton RyR1s, each of which binds one FK506 binding protein (FKBP12). RyR1 is required for excitation-contraction coupling in skeletal muscle. FKBP12, a cis-trans peptidyl-prolyl isomerase, is required for the normal gating of the RyR1 channel. In the absence of FKBP12, RyR1 channels exhibit increased gating frequency, suggesting that FKBP12 "stabilizes" the channel in the open and closed states. We now show that substitution of a Gly, Glu, or Ile for Val2461 in RyR1 prevents FKBP12 binding to RyR1, resulting in channels with increased gating frequency. In the case of the V2461I mutant RyR1, normal channel function can be restored by adding FKBP12.6, an isoform of FKBP12. These data identify Val2461 as a critical residue required for FKBP12 binding to RyR1 and demonstrate the functional role for FKBP12 in the RyR1 channel complex.  相似文献   

5.
FKBP binding characteristics of cardiac microsomes from diverse vertebrates   总被引:10,自引:0,他引:10  
FK506 binding protein (FKBP) is a cytosolic receptor for the immunosuppressive drug FK-506. The common isoform, FKBP12, was found to be associated with the calcium release channel (ryanodine receptor 1) of different species of vertebrate skeletal muscle, whereas 12.6, a novel FKBP isoform was found to be associated with canine cardiac ryanodine receptor (ryanodine receptor 2). Until recently, canine cardiac sarcoplasmic reticulum was considered to be the prototype for studying heart RyR2 and its interactions with FKBP. In this study, cardiac microsomes were isolated from diverse vertebrates: human, rabbit, rat, mice, dog, chicken, frog, and fish and were analyzed for their ability to bind or exchange with FKBP isoforms 12 and 12.6. Our studies indicate that RyR2 from seven out of the eight animals contain both FKBP12 and 12.6. Dog is the exception. It can now be concluded that the association of FKBP isoforms with RyR2 is widely conserved in the hearts of different species of vertebrates.  相似文献   

6.
The ryanodine receptor (RyR) family of calcium release channels plays a vital role in excitation–contraction coupling (ECC). Along with the dihydropyridine receptor (DHPR), calsequestrin, and several other smaller regulatory and adaptor proteins, RyRs form a large dynamic complex referred to as ECC machinery. Here we describe a simple cross-linking procedure that can be used to stabilize fragile components of the ECC machinery, for the purpose of structural elucidation by single particle cryo-electron microscopy (cryo-EM). As a model system, the complex of the FK506-binding protein (FKBP12) and RyR1 was used to test the cross-linking protocol. Glutaraldehyde fixation led to complete cross-linking of receptor-bound FKBP12 to RyR1, and also to extensive cross-linking of the four subunits comprising RyR to one another without compromising the RyR1 ultrastructure. FKBP12 cross-linked with RyR1 was visualized in 2D averages by single particle cryo-EM. Comparison of control RyR1 and cross-linked RyR1 3D reconstructions revealed minor conformational changes at the transmembrane assembly and at the cytoplasmic region. Intersubunit cross-linking enhanced [3H]ryanodine binding to RyR1. Based on our findings we propose that intersubunit cross-linking of RyR1 by glutaraldehyde induced RyR1 to adopt an open like conformation.  相似文献   

7.
The immunophilin, FK506-binding protein (FKBP12), is an essential component of the ryanodine receptor channel complex of skeletal muscle (RyR1) and modulates intracellular calcium signaling from the nedoplasmic reticulum. The cardiac muscle RyR isoform (RyR2) specifically associates with a distinct FKBP isoform, FKBP12.6. Previous studies have led to the proposal that the central domain of RyR1 exclusively mediates the interaction with FKBP12. To characterize the topography of the FKBP 12.6 binding site on the human cardiac RyR2, we have applied complementary protein-protein interaction methods using both in vivo yeast two-hybrid analysis and in vitro immunoprecipitation experiments. Our results indicate an absence of interaction of FKBP12/12.6 with fragments containin the central domain of either RyR1, RyR2, or RyR3. Furthermore, no interaction was detected between FKBP12.6 with a series of overlapping fragments encompassing the entire RyR2, either individually or in multiple combination. We also found that a distinct, alternatively spliced variant of FKBP12.6 was unable to interact with RyR. In contrast, we successfully demonstrated a robust association between the cytoplasmic domain of transforming growth factor-β receptor type I and both FKBP12 and FKBP12.6 in parallel positive control experiments, as well as between native RyR2 and FKBP12.6. These results suggest that the specific interaction of FKBP12.6 with RyR2, and generally of FKBPs with any RyR isoform, is not readily reconstituted by peptide fragments corresponding to central RyR domains. Further structural analysis will be necessary to unravel this intricate signaling system and the current model of FKBP-12-RyR interaction via a single, central RyR, epitope may therefore require revision.  相似文献   

8.
The 12.6-kDa FK506-binding protein (FKBP12.6) is considered to be a key regulator of the cardiac ryanodine receptor (RyR2), but its precise role in RyR2 function is complex and controversial. In the present study we investigated the impact of FKBP12.6 removal on the properties of the RyR2 channel and the propensity for spontaneous Ca(2+) release and the occurrence of ventricular arrhythmias. Single channel recordings in lipid bilayers showed that FK506 treatment of recombinant RyR2 co-expressed with or without FKBP12.6 or native canine RyR2 did not induce long-lived subconductance states. [(3)H]Ryanodine binding studies revealed that coexpression with or without FKBP12.6 or treatment with or without FK506 did not alter the sensitivity of RyR2 to activation by Ca(2+) or caffeine. Furthermore, single cell Ca(2+) imaging analyses demonstrated that HEK293 cells co-expressing RyR2 and FKBP12.6 or expressing RyR2 alone displayed the same propensity for spontaneous Ca(2+) release or store overload-induced Ca(2+) release (SOICR). FK506 increased the amplitude and decreased the frequency of SOICR in HEK293 cells expressing RyR2 with or without FKBP12.6, indicating that the action of FK506 on SOICR is independent of FKBP12.6. As with recombinant RyR2, the conductance and ligand-gating properties of single RyR2 channels from FKBP12.6-null mice were indistinguishable from those of single wild type channels. Moreover, FKBP12.6-null mice did not exhibit enhanced susceptibility to stress-induced ventricular arrhythmias, in contrast to previous reports. Collectively, our results demonstrate that the loss of FKBP12.6 has no significant effect on the conduction and activation of RyR2 or the propensity for spontaneous Ca(2+) release and stress-induced ventricular arrhythmias.  相似文献   

9.
It is known that the two types of FK506-binding proteins FKBP12 and FKBP12.6 are tightly associated with the skeletal (RyR1) and cardiac ryanodine receptors (RyR2), respectively, and their interactions are important for channel functions of the RyR. In the case of cardiac muscle, three amino acid residues (Gln-31, Asn-32, and Phe-59) of FKBP12.6 could be essential for the selective binding to RyR2 (Xin, H. B., Rogers, K., Qi, Y., Kanematsu, T., and Fleischer, S. (1999) J. Biol. Chem. 274, 15315-15319). In this study to identify amino acid residues of FKBP12 that are important for the selective binding to RyR1, we mutated 9 amino acid residues of FKBP12 that differ from the counterparts of FKBP12.6 (Q3E, R18A, E31Q, D32N, M49R, R57A, W59F, H94A, and K105A), and we examined binding properties of these mutants to RyR1 by in vitro binding assay by using glutathione S-transferase-fused proteins of the mutants and Triton X-100-solubilized, FKBP12-depleted rabbit skeletal sarcoplasmic reticulum vesicles. Among the nine mutants tested, only Q3E and R18A lost their selective binding ability to RyR1. Furthermore, co-immunoprecipitation of RyR1 with 33 various mutants for the 9 positions produced by introducing different size, charge, and hydrophobicity revealed that an integration of the hydrogen bonds by the irreplaceable Gln-3 and the hydrophobic interactions by the residues Arg-18 and Met-49 could be a possible mechanism for the binding of FKBP12 to RyR1. Therefore, these results suggest that the N-terminal regions of FKBP12 (Gln-3 and Arg-18) and Met-49 are essential and unique for binding of FKBP12 to RyR1 in skeletal muscle.  相似文献   

10.
The cellular and molecular processes underlying the regulation of ryanodine receptor (RyR) Ca(2+) release in smooth muscle cells (SMCs) are incompletely understood. Here we show that FKBP12.6 proteins are expressed in pulmonary artery (PA) smooth muscle and associated with type-2 RyRs (RyR2), but not RyR1, RyR3, or IP(3) receptors (IP(3)Rs) in PA sarcoplasmic reticulum. Application of FK506, which binds to FKBPs and dissociates these proteins from RyRs, induced an increase in [Ca(2+)](i) and Ca(2+)-activated Cl(-) and K(+) currents in freshly isolated PASMCs, whereas cyclosporin, an agent known to inhibit calcineurin but not to interact with FKBPs, failed to induce an increase in [Ca(2+)](i). FK506-induced [Ca(2+)](i) increase was completely blocked by the RyR antagonist ruthenium red and ryanodine, but not the IP(3)R antagonist heparin. Hypoxic Ca(2+) response and hypoxic vasoconstriction were significantly enhanced in FKBP12.6 knockout mouse PASMCs. FK506 or rapamycin pretreatment also enhanced hypoxic increase [Ca(2+)](i), but did not alter caffeine-induced Ca(2+) release (SR Ca(2+) content) in PASMCs. Norepinephrine-induced Ca(2+) release and force generation were also markedly enhanced in PASMCs from FKBP12.6 null mice. These findings suggest that FKBP12.6 plays an important role in hypoxia- and neurotransmitter-induced Ca(2+) and contractile responses by regulating the activity of RyRs in PASMCs.  相似文献   

11.
The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation-contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation. We show that PKA phosphorylation of RyR1 at Ser2843 activates the channel by releasing FKBP12. When FKB12 is bound to RyR1, it inhibits the channel by stabilizing its closed state. RyR1 in skeletal muscle from animals with heart failure (HF), a chronic hyperadrenergic state, were PKA hyperphosphorylated, depleted of FKBP12, and exhibited increased activity, suggesting that the channels are "leaky." RyR1 PKA hyperphosphorylation correlated with impaired SR Ca2+ release and early fatigue in HF skeletal muscle. These findings identify a novel mechanism that regulates RyR1 function via PKA phosphorylation in response to SNS stimulation. PKA hyperphosphorylation of RyR1 may contribute to impaired skeletal muscle function in HF, suggesting that a generalized EC coupling myopathy may play a role in HF.  相似文献   

12.
The ryanodine receptor (RyR) calcium release channel functions as a redox sensor that is sensitive to channel modulators. The FK506-binding protein (FKBP) is an important regulator of channel activity, and disruption of the RyR2-FKBP12.6 association has been implicated in cardiac disease. In the present study, we investigated whether the RyR-FKBP association is redox-regulated. Using co-immunoprecipitation assays of solubilized native RyR2 from cardiac muscle sarcoplasmic reticulum (SR) with recombinant [(35)S]FKBP12.6, we found that the sulfydryl-oxidizing agents, H(2)O(2) and diamide, result in diminished RyR2-FKBP12.6 binding. Co-sedimentation experiments of cardiac SR vesicles with [(35)S]FKBP12.6 also demonstrated that oxidizing reagents decreased FKBP binding. Matching results were obtained with skeletal muscle SR. Notably, H(2)O(2) and diamide differentially affected the RyR2-FKBP12.6 interaction, decreasing binding to approximately 75 and approximately 50% of control, respectively. In addition, the effect of H(2)O(2) was negligible when the channel was in its closed state or when applied after FKBP binding had occurred, whereas diamide was always effective. A cysteine-null mutant FKBP12.6 retained redox-sensitive interaction with RyR2, suggesting that the effect of the redox reagents is exclusively via sites on the ryanodine receptor. K201 (or JTV519), a drug that has been proposed to prevent FKBP12.6 dissociation from the RyR2 channel complex, did not restore normal FKBP binding under oxidizing conditions. Our results indicate that the redox state of the RyR is intimately connected with FKBP binding affinity.  相似文献   

13.
The cardiac isoform of the ryanodine receptor (RyR2) from dog binds predominantly a 12.6-kDa isoform of the FK506-binding protein (FKBP12.6), whereas RyR2 from other species binds both FKBP12.6 and the closely related isoform FKBP12. The role played by FKBP12.6 in modulating calcium release by RyR2 is unclear at present. We have used cryoelectron microscopy and three-dimensional (3D) reconstruction techniques to determine the binding position of FKBP12.6 on the surface of canine RyR2. Buffer conditions that should favor the "open" state of RyR2 were used. Quantitative comparison of 3D reconstructions of RyR2 in the presence and absence of FKBP12.6 reveals that FKBP12.6 binds along the sides of the square-shaped cytoplasmic region of the receptor, adjacent to domain 9, which forms part of the four clamp (corner-forming) structures. The location of the FKBP12.6 binding site on "open" RyR2 appears similar, but slightly displaced (by 1-2 nm) from that found previously for FKBP12 binding to the skeletal muscle ryanodine receptor that was in the buffer that favors the "closed" state. The conformation of RyR2 containing bound FKBP12.6 differs considerably from that depleted of FKBP12.6, particularly in the transmembrane region and in the clamp structures. The x-ray structure of FKBP12.6 was docked into the region of the 3D reconstruction that is attributable to bound FKBP12.6, to show the relative orientations of amino acid residues (Gln-31, Asn-32, Phe-59) that have been implicated as being critical in interactions with RyR2. A thorough understanding of the structural basis of RyR2-FKBP12.6 interaction should aid in understanding the roles that have been proposed for FKBP12.6 in heart failure and in certain forms of sudden cardiac death.  相似文献   

14.
Although dissociation of the 12 kDa FK506 binding protein (FKBP12)-type 1 ryanodine receptor (RyR1) complex by macrolide immunosuppressants is well documented, effects of many solutes and drugs have not been quantitated. In the current study, the influence of these on binding between solubilised RyR1 and an FKBP12-glutathione-S-transferase fusion protein was analysed using a novel assay. Association between these two proteins is stable, and is not greatly altered by changes in temperature, pH, cations, and endogenous solutes over physiological ranges. Ascomycin, an FK506 analogue, was identified for the first time as a drug which can disrupt the FKBP12-RyR1 complex.  相似文献   

15.
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is the major source of calcium (Ca2+) required for cardiac muscle excitation-contraction (EC) coupling. The channel is a tetramer comprised of four type 2 RyR polypeptides (RyR2) and four FK506 binding proteins (FKBP12.6). We show that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (Po). Using cosedimentation and coimmunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein, mAKAP. In failing human hearts, RyR2 is PKA hyperphosphorylated, resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.  相似文献   

16.
Type 2 ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. Phosphorylation of RyR2 by cAMP-dependent protein kinase A and by calmodulin-dependent protein kinase II modulates channel activity. Hyperphosphorylation at a single amino acid residue, Ser-2808, has been proposed to directly disrupt the binding of a 12.6-kDa FK506-binding protein (FKBP12.6) to RyR2, causing a RyR2 malfunction that triggers cardiac arrhythmias in human heart failure. To determine the structural basis of the interaction between Ser-2808 and FKBP12.6, we have employed two independent approaches to map this phosphorylation site in RyR2 by three-dimensional cryo-electron microscopy. In one approach, we inserted a green fluorescent protein (GFP) after amino acid Tyr-2801, and mapped the GFP three-dimensional location in the RyR2 structure. In another approach, the binding site of monoclonal antibody 34C was mapped in the three-dimensional structure of skeletal muscle RyR1. The epitope of antibody 34C has been mapped to amino acid residues 2,756 through 2,803 of the RyR1 sequence, corresponding to residues 2,722 through 2,769 of the RyR2 sequence. These locations of GFP insertion and antibody binding are adjacent to one another in domain 6 of the cytoplasmic clamp region. Importantly, the three-dimensional location of the Ser-2808 phosphorylation site is 105-120 A distance from the FKBP12.6 binding site mapped previously, indicating that Ser-2808 is unlikely to be directly involved in the binding of FKBP12.6 to RyR2, as had been proposed previously.  相似文献   

17.
FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells   总被引:1,自引:0,他引:1  
Intracellular Ca2+ release through ryanodine receptors (RyRs) plays important roles in smooth muscle excitation-contraction coupling, but the underlying regulatory mechanisms are poorly understood. Here we show that FK506 binding protein of 12.6 kDa (FKBP12.6) associates with and regulates type 2 RyRs (RyR2) in tracheal smooth muscle. FKBP12.6 binds to RyR2 but not other RyR or inositol 1,4,5-trisphosphate receptors, and FKBP12, known to bind to and modulate skeletal RyRs, does not associate with RyR2. When dialyzed into tracheal myocytes, cyclic ADP-ribose (cADPR) alters spontaneous Ca2+ release at lower concentrations and produces macroscopic Ca2+ release at higher concentrations; neurotransmitter-evoked Ca2+ release is also augmented by cADPR. These actions are mediated through FKBP12.6 because they are inhibited by molar excess of recombinant FKBP12.6 and are not observed in myocytes from FKBP12.6-knockout mice. We also report that force development in FKBP12.6-null mice, observed as a decrease in the concentration/tension relationship of isolated trachealis segments, is impaired. Taken together, these findings point to an important role of the FKBP12.6/RyR2 complex in stochastic (spontaneous) and receptor-mediated Ca2+ release in smooth muscle. FK506 binding protein 12.6; ryanodine receptor type 2; calcium sparks; calcium-activated chloride currents  相似文献   

18.
The 12.6-kDa FK506-binding protein (FKBP12.6) interacts with the cardiac ryanodine receptor (RyR2) and modulates its channel function. However, the molecular basis of FKBP12.6-RyR2 interaction is poorly understood. To investigate the significance of the isoleucine-proline (residues 2427-2428) dipeptide epitope, which is thought to form an essential part of the FKBP12.6 binding site in RyR2, we generated single and double mutants, P2428Q, I2427E/P2428A, and P2428A/L2429E, expressed them in HEK293 cells, and assessed their ability to bind GST-FKBP12.6. None of these mutations abolished GST-FKBP12.6 binding, indicating that this isoleucine-proline motif is unlikely to form the core of the FKBP12.6 binding site in RyR2. To systematically define the molecular determinants of FKBP12.6 binding, we constructed a series of internal and NH(2)- and COOH-terminal deletion mutants of RyR2 and examined the effect of these deletions on GST-FKBP12.6 binding. These deletion analyses revealed that the first 305 NH(2)-terminal residues and COOH-terminal residues 1937-4967 are not essential for GST-FKBP12.6 binding, whereas multiple sequences within a large region between residues 305 and 1937 are required for GST-FKBP12.6 interaction. Furthermore, an NH(2)-terminal fragment containing the first 1937 residues is sufficient for GST-FKBP12.6 binding. Co-expression of overlapping NH(2) and COOH-terminal fragments covering the entire sequence of RyR2 produced functional channels but did not restore GST-FKBP12.6 binding. These data suggest that FKBP12.6 binding is likely to be conformationdependent. Binding of FKBP12.6 to the NH(2)-terminal domain may play a role in stabilizing the conformation of this region.  相似文献   

19.
In smooth muscle, the ryanodine receptor (RyR) mediates Ca(2+) release from the sarcoplasmic reticulum (SR) Ca(2+) store. Release may be regulated by the RyR accessory FK506-binding protein (FKBP12) either directly, as a result of FKBP12 binding to RyR, or indirectly via modulation of the activity of the phosphatase calcineurin or kinase mTOR. Here we report that RyR-mediated Ca(2+) release is modulated by FKBP12 in colonic but not aortic myocytes. Neither calcineurin nor mTOR are required for FKBP12 modulation of Ca(2+) release in colonic myocytes to occur. In colonic myocytes, co-immunoprecipitation techniques established that FKBP12 and calcineurin each associated with the RyR2 receptor isoform (the main isoform in this tissue). Single colonic myocytes were voltage clamped in the whole cell configuration and cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) increases evoked by the RyR activator caffeine. Under these conditions FK506, which displaces FKBP12 (to inhibit calcineurin) and rapamycin, which displaces FKBP12 (to inhibit mTOR), each increased the [Ca(2+)](c) rise evoked by caffeine. Notwithstanding, neither mTOR nor calcineurin are required to potentiate caffeine-evoked Ca(2+) increases evoked by each drug. Thus, the mTOR and phosphatidylinositol 3-kinase inhibitor, LY294002, which directly inhibits mTOR without removing FKBP12 from RyR, did not alter caffeine-evoked [Ca(2+)](c) transients. Nor did inhibition of calcineurin by cypermethrin, okadaic acid or calcineurin inhibitory peptide block the FK506-induced increase in RyR-mediated Ca(2+) release. In aorta, although RyR3 (the main isoform), FKBP12 and calcineurin were each present, RyR-mediated Ca(2+) release was unaffected by either FK506, rapamycin or the calcineurin inhibitors cypermethrin and okadaic acid in single voltage clamped aortic myocytes. Presumably failure of FKBP12 to associate with RyR3 resulted in the immunosuppressant drugs (FK506 and rapamycin) being unable to alter the activity of RyR. The effects of these drugs are therefore, apparently dependent on an association of FKBP12 with RyR. Together, removal of FKBP12 from RyR augmented Ca(2+) release via the channel in colonic myocytes. Neither calcineurin nor mTOR are required for the FK506- or rapamycin-induced potentiation of RyR Ca(2+) release to occur. The results indicate that FKBP12 directly inhibits RyR channel activity in colonic myocytes but not in aorta.  相似文献   

20.
The 12-kDa FK506-binding proteins (FKBP12 and FKBP12.6) are regulatory subunits of ryanodine receptor (RyR) Ca2+ release channels. To investigate the structural basis of FKBP interactions with the RyR1 and RyR2 isoforms, we used site-directed fluorescent labeling of FKBP12.6, ligand binding measurements, and fluorescence resonance energy transfer (FRET). Single-cysteine substitutions were introduced at five positions distributed over the surface of FKBP12.6. Fluorescent labeling at position 14, 32, 49, or 85 did not affect high affinity binding to the RyR1. By comparison, fluorescent labeling at position 41 reduced the affinity of FKBP12.6 binding by 10-fold. Each of the five fluorescent FKBPs retained the ability to inhibit [3H]ryanodine binding to the RyR1, although the maximal extent of inhibition was reduced by half when the label was attached at position 32. The orientation of FKBP12.6 bound to the RyR1 and RyR2 was examined by measuring FRET from the different labeling positions on FKBP12.6 to an acceptor attached within the RyR calmodulin subunit. FRET was dependent on the position of fluorophore attachment on FKBP12.6; however, for any given position, the distance separating donors and acceptors bound to RyR1 versus RyR2 did not differ significantly. Our results show that FKBP12.6 binds to RyR1 and RyR2 in the same orientation and suggest new insights into the discrete structural domains responsible for channel binding and inhibition. FRET mapping of RyR-bound FKBP12.6 is consistent with the predictions of a previous cryoelectron microscopy study and strongly supports the proposed structural model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号