首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We propose a new method for single-particle reconstruction, which should be generally applicable to structure determination for membrane proteins. After reconstitution into a small spherical vesicle, a membrane protein takes a particular orientation relative to the membrane normal, and its position in the projected image of the vesicle directly defines two of its three Euler angles of orientation. The spherical constraint imposed by the vesicle effectively reduces the dimensionality of the alignment search from 5 to 3 and simplifies the detection of the particle. Projection images of particles in vesicles collectively take all possible orientations and therefore cover the whole Fourier space. Analysis of images of vesicles in ice showed that the vesicle density is well described by a simple model for membrane electron scattering density. In fitting this model we found that osmotically swollen vesicles remain nearly spherical through the freezing process. These results satisfy the basic experimental requirements for spherical reconstruction. A computer simulation of particles in vesicles showed that this method provides good estimates of the two Euler angles and thus may improve single-particle reconstruction and extend it to smaller membrane proteins.  相似文献   

3.
Preferred particle orientation represents a recurring problem in single-particle cryogenic electron microcopy (cryo-EM). A specimen-independent approach through tilting has been attempted to increase particle orientation coverage, thus minimizing anisotropic three-dimensional (3D) reconstruction. However, focus gradient is a critical issue hindering tilt applications from being a general practice in single-particle cryo-EM. The present study describes a newly developed geometrically optimized approach, goCTF, to reliably determine the global focus gradient. A novel strategy of determining contrast transfer function (CTF) parameters from a sector of the signal preserved power spectrum is applied to increase reliability. Subsequently, per-particle based local focus refinement is conducted in an iterative manner to further improve the defocus accuracy. Novel diagnosis methods using a standard deviation defocus plot and goodness of fit heatmap have also been proposed to evaluate CTF fitting quality prior to 3D refinement. In a benchmark study, goCTF processed a published single-particle cryo-EM dataset for influenza hemagglutinin trimer collected at a 40-degree specimen tilt. The resulting 3D reconstruction map was improved from 4.1?Å to 3.7?Å resolution. The goCTF program is built on the open-source code of CTFFIND4, which adopts a consistent user interface for ease of use.  相似文献   

4.
A comparative view on sex determination in medaka   总被引:6,自引:0,他引:6  
In fish, an amazing variety of sex determination mechanisms are known, ranging from hermaphroditism to gonochorism and from environmental to genetic sex determination. This makes fish especially suited for studying sex determination from the evolutionary point of view. In several fish groups, different sex determination mechanisms are found in closely related species, and evolution of this process is still ongoing in recent organisms. The medaka (Oryzias latipes) has an XY-XX genetic sex determination system. The Y-chromosome in this species is at an early stage of evolution. The molecular differences between X and Y are only very subtle and the Y-specific segment is very small. The sex-determining region has accumulated duplicated sequences from elsewhere in the genome, leading to recombinational isolation. The region contains a candidate for the male sex-determining gene named dmrt1bY. This gene arose through duplication of an autosomal chromosome fragment of linkage group 9. While all other genes degenerated, dmrt1bY is the only functional gene in the Y-specific region. The duplication leading to dmrt1bY occurred recently during evolution of the genus Oryzias. This suggests that different genes might be the master sex-determining gene in other fish.  相似文献   

5.
For many macromolecular assemblies, both a cryo-electron microscopy map and atomic structures of its component proteins are available. Here we describe a method for fitting and refining a component structure within its map at intermediate resolution (<15 A). The atomic positions are optimized with respect to a scoring function that includes the crosscorrelation coefficient between the structure and the map as well as stereochemical and nonbonded interaction terms. A heuristic optimization that relies on a Monte Carlo search, a conjugate-gradients minimization, and simulated annealing molecular dynamics is applied to a series of subdivisions of the structure into progressively smaller rigid bodies. The method was tested on 15 proteins of known structure with 13 simulated maps and 3 experimentally determined maps. At approximately 10 A resolution, Calpha rmsd between the initial and final structures was reduced on average by approximately 53%. The method is automated and can refine both experimental and predicted atomic structures.  相似文献   

6.
Allen GS  Zavialov A  Gursky R  Ehrenberg M  Frank J 《Cell》2005,121(5):703-712
The 70S ribosome and its complement of factors required for initiation of translation in E. coli were purified separately and reassembled in vitro with GDPNP, producing a stable initiation complex (IC) stalled after 70S assembly. We have obtained a cryo-EM reconstruction of the IC showing IF2*GDPNP at the intersubunit cleft of the 70S ribosome. IF2*GDPNP contacts the 30S and 50S subunits as well as fMet-tRNA(fMet). IF2 here adopts a conformation radically different from that seen in the recent crystal structure of IF2. The C-terminal domain of IF2 binds to the single-stranded portion of fMet-tRNA(fMet), thereby forcing the tRNA into a novel orientation at the P site. The GTP binding domain of IF2 binds to the GTPase-associated center of the 50S subunit in a manner similar to EF-G and EF-Tu. Additionally, we present evidence for the localization of IF1, IF3, one C-terminal domain of L7/L12, and the N-terminal domain of IF2 in the initiation complex.  相似文献   

7.
8.
A Zernike-moment-based non-local denoising filter for cryo-EM images   总被引:2,自引:0,他引:2  
Cryo-electron microscopy (cryo-EM) plays an important role in determining the structure of proteins, viruses, and even the whole cell. It can capture dynamic structural changes of large protein complexes, which other methods such as X-ray crystallography and nuclear magnetic resonance analysis find difficult. The signal-to-noise ratio of cryo-EM images is low and the contrast is very weak, and therefore, the images are very noisy and require filtering. In this paper, a filtering method based on non-local means and Zernike moments is proposed. The method takes into account the rotational symmetry of some biological molecules to enhance the signal-to-noise ratio of cryo-EM images. The method may be useful in cryo-EM image processing such as the automatic selection of particles, orientation determination, and the building of initial models.  相似文献   

9.
Membrane proteins reside at interfaces between aqueous and lipid media and solving their molecular structure relies most of the time on removing them from the membrane using detergent. Luckily, this solubilization process does not strip them from all the associated lipids and single-particle cryo-transmission electron microscopy (SP-TEM) has proved a very good tool to visualise both protein high-resolution structure and, often, many of its associated lipids. In this review, we observe membrane protein structures from the Protein DataBank and their associated maps in the Electron Microscopy DataBase and determine how the SP-TEM maps allow lipid visualization, the type of binding sites, the influence of symmetry, resolution and other factors. We illustrate lipid visualization around and inside the protein core, show that some lipid bilayers in the core can be shifted with respect to the membrane and how some proteins can actively bend the lipid bilayer that binds to them. We conclude that resolution improvement in SP-TEM will likely enable many more discoveries regarding the role of lipids bound to proteins.  相似文献   

10.
The generation of ab initio three-dimensional (3D) models is a bottleneck in the studies of large macromolecular assemblies by single-particle cryo-electron microscopy. We describe here a novel method, in which established methods for two-dimensional image processing are combined with newly developed programs for joint rotational 3D alignment of a large number of class averages (RAD) and calculation of 3D volumes from aligned projections (VolRec). We demonstrate the power of the method by reconstructing an ∼ 660-kDa ATP-fueled AAA+ motor to 7.5 Å resolution, with secondary structure elements identified throughout the structure. We propose the method as a generally applicable automated strategy to obtain 3D reconstructions from unstained single particles imaged in vitreous ice.  相似文献   

11.
A new method for the flexible fitting of high-resolution structures into low-resolution maps of macromolecular complexes from electron microscopy has been recently described in applications to simulated electron density maps. This method uses a linear combination of low-frequency normal modes in an iterative manner to deform the structure optimally to conform to the low-resolution electron density map. Gradient-following techniques in the coordinate space of collective normal modes are used to optimize the overall correlation coefficient between computed and measured electron densities. With this approach, multi-scale flexible fitting can be performed using all-atoms or Calpha atoms. In this paper, illustrative studies of normal mode based flexible fitting to experimental cryo-EM maps are presented for three different systems. Large, functionally relevant conformational changes for elongation factor G bound to the ribosome, Escherichia coli RNA polymerase and cowpea chlorotic mottle virus are elucidated as the result of the application of NMFF from high-resolution structures to cryo-electron microscopy maps.  相似文献   

12.
13.
Bacterial class I release factors (RFs) are seen by cryo-electron microscopy (cryo-EM) to span the distance between the ribosomal decoding and peptidyl transferase centers during translation termination. The compact conformation of bacterial RF1 and RF2 observed in crystal structures will not span this distance, and large structural rearrangements of RFs have been suggested to play an important role in termination. We have collected small-angle X-ray scattering (SAXS) data from E. coli RF1 and from a functionally active truncated RF1 derivative. Theoretical scattering curves, calculated from crystal and cryo-EM structures, were compared with the experimental data, and extensive analyses of alternative conformations were made. Low-resolution models were constructed ab initio, and by rigid-body refinement using RF1 domains. The SAXS data were compatible with the open cryo-EM conformation of ribosome bound RFs and incompatible with the crystal conformation. These conclusions obviate the need for assuming large conformational changes in RFs during termination.  相似文献   

14.

Background  

Protein secondary structure prediction method based on probabilistic models such as hidden Markov model (HMM) appeals to many because it provides meaningful information relevant to sequence-structure relationship. However, at present, the prediction accuracy of pure HMM-type methods is much lower than that of machine learning-based methods such as neural networks (NN) or support vector machines (SVM).  相似文献   

15.
Small multidrug resistance (SMR) transporters contribute to bacterial resistance by coupling the efflux of a wide range of toxic aromatic cations, some of which are commonly used as antibiotics and antiseptics, to proton influx. EmrE is a prototypical small multidrug resistance transporter comprising four transmembrane segments (M1-M4) that forms dimers. It was suggested recently that EmrE molecules in the dimer have different topologies, i.e. monomers have opposite orientations with respect to the membrane plane. A 3-D structure of EmrE acquired by electron cryo-microscopy (cryo-EM) at 7.5 Angstroms resolution in the membrane plane showed that parts of the structure are related by quasi-symmetry. We used this symmetry relationship, combined with sequence conservation data, to assign the transmembrane segments in EmrE to the densities seen in the cryo-EM structure. A C alpha model of the transmembrane region was constructed by considering the evolutionary conservation pattern of each helix. The model is validated by much of the biochemical data on EmrE with most of the positions that were identified as affecting substrate translocation being located around the substrate-binding cavity. A suggested mechanism for proton-coupled substrate translocation in small multidrug resistance antiporters provides a mechanistic rationale to the experimentally observed inverted topology.  相似文献   

16.
A view of the three dimensional structure of globular proteins based on continuous networks of hydrogen bonds is proposed. Active sites of enzymes and ion sites are prominent and, within the networks, there are islands of hydrophobic regions giving an overall piebald effect to the appearance of the molecule. This point of view was originally suggested by the results of quantum mechanical computations on the coupling between hydrogen bonds. A formalism for the total energy of a globular protein in water is also suggested.The study of five lines of experimental evidence supports this suggestion. The analysis of the experimental X-ray data for ten globular proteins, using the NETWORK program, revealed the existence of these hydrogen bond networks; X-ray data showed that water molecules tend to occupy fixed positions relative to the protein molecule; a survey has shown that water molecules tend to occupy specific positions relative to the hydrogen bonding side chains; experimental evidence on the bulk properties of lysozyme showed that there exist tightly bound water molecules; graphics studies of the ribonucleaseA molecule demonstrated the networks and the piebald effect. This point of view is pictorially simple and, to illustrate the use of such networks, we discuss the simple ion pairs which occur as substructures within the networks.  相似文献   

17.
The structures of membrane proteins are generally solved using samples dissolved in micelles, bicelles, or occasionally phospholipid bilayers using X-ray diffraction or magnetic resonance. Because these are less than perfect mimics of true biological membranes, the structures are often confirmed by evaluating the effects of mutations on the properties of the protein in their native cellular environments. Low-resolution structures are also sometimes generated from the results of site-directed mutagenesis when other structural data are incomplete or not available. Here, we describe a rapid and automated approach to determine structures from data on site-directed mutants for the special case of homo-oligomeric helical bundles. The method uses as input an experimental profile of the effects of mutations on some property of the protein. This profile is then interpreted by assuming that positions that have large effects on structure/function when mutated project toward the center of the oligomeric bundle. Model bundles are generated, and correlation analysis is used to score which structures have inter-subunit Cβ distances between adjoining monomers that best correlate with the experimental profile. These structures are then clustered and refined using energy-based minimization methods. For a set of 10 homo-oligomeric TM protein structures ranging from dimers to pentamers, we show that our method predicts structures to within 1-2 Å backbone RMSD relative to X-ray and NMR structures. This level of agreement approaches the precision of NMR structures solved in different membrane mimetics.  相似文献   

18.
The Bayesian model-based approach to inferring hidden genetic population structures using multilocus molecular markers has become a popular tool within certain branches of biology. In particular, it has been shown that heterogeneous data arising from genetically dissimilar latent groups of individuals can be effectively modelled using an unsupervised classification formulation. However, most currently employed models ignore potential linkage within the employed molecular information, and can therefore lead to biased inferences under certain circumstances. Utilizing the general theory of graphical models, we develop a framework that accounts for dependences both within linked molecular marker loci and DNA sequence data. Due to a high level of sequence conservation among eukaryotic species, the latter aspect is particularly relevant for analyzing rapidly evolving microbial species. The advantages of incorporating the dependence due to linkage in the classification models are illustrated by analyses of both simulated data and real samples of Bacillus cereus.  相似文献   

19.
Shen V  Kiledjian M 《Cell》2006,127(6):1093-1095
The exosome is a 3' to 5' exoribonuclease central to many cellular processes, including mRNA decay. now present the biochemical reconstitution and crystal structure of the eukaryotic exosome. This remarkable achievement provides key insights into the composition and assembly of the human and yeast exosomes, revealing functions of individual subunits.  相似文献   

20.
The spliceosome excises introns from pre-mRNA in a two-step splicing reaction. So far, the three-dimensional (3D) structure of a spliceosome with preserved catalytic activity has remained elusive. Here, we determined the 3D structure of the human, catalytically active step I spliceosome (C complex) by cryo-electron microscopy (cryo-EM) in vitrified ice. Via immunolabeling we mapped the position of the 5' exon. The C complex contains an unusually salt-stable ribonucleoprotein (RNP) core that harbors its catalytic center. We determined the 3D structure of this RNP core and also that of a post-step II particle, the 35S U5 snRNP, which contains most of the C complex core proteins. As C complex domains could be recognized in these structures, their position in the C complex could be determined, thereby allowing the region harboring the spliceosome's catalytic core to be localized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号