首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingomonas sp. strain A4 is capable of utilizing acenaphthene and acenaphthylene as sole carbon and energy sources, but it is unable to grow on other polycyclic aromatic hydrocarbons (PAHs). The genes encoding terminal oxygenase components of ring-hydroxylating dioxygenase (arhA1 and arhA2) were isolated from this strain by means of the ability to oxidize indole to indigo of the Escherichia coli clone containing electron transport proteins from phenanthrene-degrading Sphingobium sp. strain P2. The translated products of arhA1 and arhA2 exhibited moderate sequence identity (less than 56%) to large and small subunits of dioxygenase of other ring-hydroxylating dioxygenases. Biotransformation with recombinant E. coli clone revealed the broad substrate specificity of this oxygenase toward several PAHs including acenaphthene, acenaphthylene, naphthalene, phenanthrene, anthracene and fluoranthene. Southern hybridization analysis revealed the presence of a putative arhA1 homologue on a locus different from that of the arhA1 gene. Insertion inactivation of the arhA1 gene in strain A4 suggested that the gene but not the putative homologue one was involved in the degradation of acenaphthene and acenaphthylene in this strain.  相似文献   

2.
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.  相似文献   

3.
4.
A new carbazole (CAR)-degrading bacterium, called strain OM1, was isolated from activated sludge obtained from sewage disposal plants in Fukuoka Prefecture, and it was identified as Pseudomonas stutzeri. Anthranilic acid (AN), 2'-aminobiphenyl-2,3-diol and its meta-cleavage product, 2-hydroxy-6-oxo-6-(2'-aminophenyl)-hexa-2,4-dienoic acid, were identified as metabolic intermediates of CAR in the ethyl acetate extract of the culture broth. Therefore, the CAR catabolic pathway to AN in strain OM1 was indicated to be identical to those found in the Pseudomonas sp. strains CA06 and CA10. The strain OM1 degraded catechol (CAT) via a meta-cleavage pathway in contrast to strains CA06 and CA10, which transform catechol into cis, cis-munonic acid. Clones containing a 6.9-kb EcoRI fragment and a 3-kb PstI-SphI fragment were isolated from colonies, forming a clear zone of CAR and a yellow ring-cleavage product from CAT, respectively. Recombinant E. coli carrying the 6.9-kb fragment degraded CAR in the L-broth and produced AN. Cell-free extract from the clone carrying a 3-kb PstI-SphI fragment had high meta-ring-cleavage dioxygenase activity for CAT. The nucleotide sequences of these fragments were determined. The 6.9-kb fragment showed a very high degree of homology with the CAR catabolic genes of strain CA10. The amino acid and nucleotide sequences of the 3-kb fragment were found to exhibit significant homology with the genes for the CAT-catabolic enzymes of TOL plasmid pWW0, plasmid NAH7, and plasmid pVI150.  相似文献   

5.
The nucleotide sequences of eight plasmids isolated from seven Streptococcus thermophilus strains have been determined. Plasmids pSt04, pER1-1, and pJ34 are related and replicate via a rolling circle mechanism. Plasmid pJ34 encodes for a replication initiation protein (RepA) and a small polypeptide with unknown function. Plasmids pSt04 and pER1-1 carry in addition to repA genes coding for small heat shock proteins (sHsp). Expression of these proteins is induced at elevated temperatures or low pH and increases the thermo- and acid resistance. Plasmids pER1-2 and pSt22-2 show identical sequences with five putative open reading frames (ORFs). The gene products of ORF1 and ORF4 reveal some similarities to transposon encoded proteins of Bacillus subtilis and Tn916. ORF1 of plasmid pSt106 encodes a protein similar to resolvases of different Gram-positive bacteria. Integrity of ORF2 and 3, encoding a putative DNA primase and a replication protein, is essential for replication. ORF1 to 3 of plasmid pSt08, which are organized in a tricistronic operon, encode a RepA protein, an adenosine-specific methyltransferase, and a type II restriction endonuclease. Another type II restriction-modification (R/M) system is encoded on plasmid pSt0 which is highly similar to those encoded on lactococcal plasmid pHW393 and B. subtilis plasmid pXH13. Plasmid-free derivatives of strains St0 and St08 show increased phage sensitivity, indicating that in the wild-type strains the R/M systems are functionally expressed. Recombinant plasmids based on the replicons of plasmids pSt04, pJ34, pSt106, pSt08, and pSt0, are able to replicate in Lactococcus lactis and B. subtilis, respectively, whereas constructs carrying pER1-2 only replicate in S. thermophilus.  相似文献   

6.
The degradation of 2,4-dinitrotoluene (DNT) by Pseudomonas sp. strain DNT is initiated by a dioxygenase attack to yield 4-methyl-5-nitrocatechol (MNC) and nitrite. Subsequent oxidation of MNC by a monooxygenase results in the removal of the second molecule of nitrite, and further enzymatic reactions lead to ring fission. Initial studies on the molecular basis of DNT degradation in this strain revealed the presence of three plasmids. Mitomycin-derived mutants deficient in either DNT dioxygenase only or DNT dioxygenase and MNC monooxygenase were isolated. Plasmid profiles of mutant strains suggested that the mutations resulted from deletions in the largest plasmid. Total plasmid DNA partially digested by EcoRI was cloned into a broad-host-range cosmid vector, pCP13. Recombinant clones containing genes encoding DNT dioxygenase, MNC monooxygenase, and 2,4,5-trihydroxytoluene oxygenase were characterized by identification of reaction products and the ability to complement mutants. Subcloning analysis suggests that the DNT dioxygenase is a multicomponent enzyme system and that the genes for the DNT pathway are organized in at least three different operons.  相似文献   

7.
Retinal and its derivatives represent essential compounds in many biological systems. In animals, they are synthesized through a symmetrical cleavage of beta-carotene catalysed by a monooxygenase. Here, we demonstrate that the open reading frame sll1541 from the cyanobacterium Synechocystis sp. PCC 6803 encodes the first eubacterial, retinal synthesizing enzyme (Diox1) thus far reported. In contrast to enzymes from animals, Diox1 converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic product was proven by HPLC, GC-MS and in a biological test. Investigations, of the stereospecifity showed that Diox1 cleaved only the all-trans form of beta-apo-8'-carotenal, yielding all-trans-retinal. However, Diox1 exhibited wide substrate specificity with respect to chain-lengths and functional end-groups. Although with divergent Km and Vmax values, the enzyme converted beta-apo-carotenals, (3R)-3-OH-beta-apo-carotenals as well as apo-lycopenals into retinal, (3R)-3-hydroxy-retinal and acycloretinal respectively. In addition, the alcohols of these substrates were cleaved to yield the corresponding retinal derivatives.  相似文献   

8.
Bacterial strains expressing toluene and naphthalene dioxygenase were used to examine the sequence of reactions involved in the oxidation of 1,2-dihydronaphthalene. Toluene dioxygenase of Pseudomonas putida F39/D oxidizes 1,2-dihydronaphthalene to (+)-cis-(1S,2R)-dihydroxy-1,2,3,4-tetrahydronaphthalene, (+)-(1R)-hydroxy-1,2-dihydronaphthalene, and (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, naphthalene dioxygenase of Pseudomonas sp. strain NCIB 9816/11 oxidizes 1,2-dihydronaphthalene to the opposite enantiomer, (-)-cis-(1R,2S)-dihydroxy-1,2,3,4-tetrahydronaphthalene and the identical (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. Recombinant Escherichia coli strains expressing the structural genes for toluene and naphthalene dioxygenases confirmed the involvement of these enzymes in the reactions catalyzed by strains F39/D and NCIB 9816/11. 1-Hydroxy-1,2-dihydronaphthalene was not formed by strains expressing naphthalene dioxygenase. These results coupled with time course studies and deuterium labelling experiments indicate that, in addition to direct dioxygenation of the olefin, both enzymes have the ability to desaturate (dehydrogenate) 1,2-dihydronaphthalene to naphthalene, which serves as a substrate for cis dihydroxylation.  相似文献   

9.
10.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an alpha(3)beta(3) hexamer. The apparent K(m) of 2-nitrotoluene dioxygenase for 2NT was 20 muM, and that for naphthalene was 121 muM. The specificity constants were 7.0 muM(-1) min(-1) for 2NT and 1.2 muM(-1) min(-1) for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

11.
bph operons coding for biphenyl-polychlorinated biphenyl degradation in Pseudomonas pseudoalcaligenes KF707 and Pseudomonas putida KF715 and tod operons coding for toluene-benzene metabolism in P. putida F1 are very similar in gene organization as well as size and homology of the corresponding enzymes (G. J. Zylstra and D. T. Gibson, J. Biol. Chem. 264:14940-14946, 1989; K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), despite their discrete substrate ranges for metabolism. The gene components responsible for substrate specificity between the bph and tod operons were investigated. The large subunit of the terminal dioxygenase (encoded by bphA1 and todC1) and the ring meta-cleavage compound hydrolase (bphD and todF) were critical for their discrete metabolic specificities, as shown by the following results. (i) Introduction of todC1C2 (coding for the large and small subunits of the terminal dioxygenase in toluene metabolism) or even only todC1 into biphenyl-utilizing P. pseudoalcaligenes KF707 and P. putida KF715 allowed them to grow on toluene-benzene by coupling with the lower benzoate meta-cleavage pathway. Introduction of the bphD gene (coding for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) into toluene-utilizing P. putida F1 permitted growth on biphenyl. (ii) With various bph and tod mutant strains, it was shown that enzyme components of ferredoxin (encoded by bphA3 and todB), ferredoxin reductase (bphA4 and todA), and dihydrodiol dehydrogenase (bphB and todD) were complementary with one another. (iii) Escherichia coli cells carrying a hybrid gene cluster of todClbphA2A3A4BC (constructed by replacing bphA1 with todC1) converted toluene to a ring meta-cleavage 2-hydroxy-6-oxo-hepta-2,4-dienoic acid, indicating that TodC1 formed a functional multicomponent dioxygenase associated with BphA2 (a small subunit of the terminal dioxygenase in biphenyl metabolism), BphA3, and BphA4.  相似文献   

12.
A phosphodiesterase I (EC 3.1.4.1; PDE-I) was purified from Walterinnesia aegyptia venom by preparative native polyacrylamide gel electrophoresis (PAGE). A single protein band was observed in analytical native PAGE and sodium dodecyl sulfate (SDS)-PAGE. PDE-I was a single-chain glycoprotein with an estimated molecular mass of 158 kD (SDS-PAGE). The enzyme was free of 5'-nucleotidase and alkaline phosphatase activities. The optimum pH and temperature were 9.0 and 60°C, respectively. The energy of activation (Ea) was 96.4, the V(max) and K(m) were 1.14 μM/min/mg and 1.9 × 10(-3) M, respectively, and the K(cat) and K(sp) were 7 s(-1) and 60 M(-1) min(-1) respectively. Cysteine was a noncompetitive inhibitor, with K(i) = 6.2 × 10(-3) M and an IC(50) of 2.6 mM, whereas adenosine diphosphate was a competitive inhibitor, with K(i) = 0.8 × 10(-3) M and an IC(50) of 8.3 mM. Glutathione, o-phenanthroline, zinc, and ethylenediamine tetraacetic acid (EDTA) inhibited PDE-I activity whereas Mg(2+) slightly potentiated the activity. PDE-I hydrolyzed thymidine-5'-monophosphate p-nitrophenyl ester most readily, whereas cyclic 3'-5'-AMP was least susceptible to hydrolysis. PDE-I was not lethal to mice at a dose of 4.0 mg/kg, ip, but had an anticoagulant effect on human plasma. These findings indicate that W. aegyptia PDE-I shares various characteristics with this enzyme from other snake venoms.  相似文献   

13.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. strain NA1, revealed the presence of a 1,068-bp open reading frame encoding a protein consisting of 356 amino acids with a calculated molecular mass of 39,714 Da (GenBank accession no. DQ144132). Sequence analysis showed that it was similar to the putative aminopeptidase P (APP) of Thermococcus kodakaraensis KOD1. Amino acid residues important for catalytic activity and the metal binding ligands conserved in bacterial, nematode, insect, and mammalian APPs were also conserved in the Thermococcus sp. strain NA1 APP. The archaeal APP, designated TNA1_APP (Thermococcus sp. strain NA1 APP), was cloned and expressed in Escherichia coli. The recombinant enzyme hydrolyzed the amino-terminal Xaa-Pro bond of Lys(Nepsilon-Abz)-Pro-Pro-pNA and the dipeptide Met-Pro (Km, 0.96 mM), revealing its functional identity. Further enzyme characterization showed the enzyme to be a Co2+-, Mn2+-, or Zn2+-dependent metallopeptidase. Optimal APP activity with Met-Pro as the substrate occurred at pH 5 and a temperature of 100 degrees C. The APP was thermostable, with a half-life of >100 min at 80 degrees C. This study represents the first characterization of a hyperthermophilic archaeon APP.  相似文献   

14.
15.
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.  相似文献   

16.
The possible role of cyclic AMP in the presynaptic alpha-adrenoceptor-mediated modulation of [3H]noradrenaline (NA) release induced by 13 mM K+ from superfused rat cerebral cortex slices was investigated. Both dibutyryl-cyclic AMP (db-cAMP) and 8-bromo-cyclic AMP (8-Br-cAMP) dose-dependently (10(-4) - 10(-2) M) enhanced K+-induced (3H]NA release, maximally to about 160% of control. In contrast, db-cAMP had no effect on calcium-induced [3H]NA release in the presence of the calcium ionophore A 23187. Surprisingly, the phosphodiesterase (PDE) inhibitors 3-isobutyl-1-methylxanthine (IBMX). 7-benzyl-IBMX, 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771), and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724) appeared to inhibit K+-induced [3H]NA release in a dose-dependent (10(-5) - 10(-3) M) manner. At a concentration of 10(-4) M, AK 62771 caused an inhibition of [3H]NA release by 30%, and this inhibitory effect was not affected by 10(-6) M phentolamine nor by 10(-3) M db-cAMP or 10(-4) M theophylline. Theophylline by itself enhanced [3H]NA release to about 135% of control. The inhibitor effect of the alpha-adrenoceptor agonist oxymetazoline (1 micro M) and the enhancing effect of the antagonist phentolamine (1 micro M) on [3H]NA release were significantly decreased in the presence of 10(-3) M db-cAMP or 8-Br-cAMP, whereas 10(-4) M ZK 62771 had no effect. In the presence of 10(-2) M NaF, a potent activator of adenylate cyclase, the inhibitory effect of oxymetazoline (1 micro M) on [3H]NA release was significantly decreased. The data obtained with the cyclic AMP analogues support the hypothesis that activation of presynaptic alpha-receptors modulating NA release results in an inhibition of a presynaptic adenylate cyclase. Possible causes for the anomalous effects of th PDE inhibitors are discussed.  相似文献   

17.
Hydrolysis following meta-ring cleavage by a dioxygenase is a well-known step in aromatic compound metabolism. The 2-hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoic acid hydrolase from Pseudomonas LD2 is a new member of the small group of characterized aromatic hydrolases that catalyze the cleavage of C-C bonds. In this study, the His(6)-tagged 2-hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoic acid (HOPDA) hydrolase was purified from a recombinant Escherichia coli strain utilizing immobilized metal affinity chromatography. 2-Hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoic acid hydrolase is a colorless homodimer with no cofactor requirement. The enzyme actively converted HOPDA into benzoic acid and 2-hydroxypenta-2,4-dienoic acid. The enzyme exhibited activity between pH 6.5 and 10.5 with a maximum activity at pH 7.0. The optimum temperature at pH 7.0 was 60 degrees C. The calculated K'(m) for HOPDA was 4.6 microM, the V(max) was 3.3 micromol min(-1), and the K(s) was 70.0 microM. This corresponds to a maximum specific turnover rate of 1300 HOPDAs(-1)dimer(-1). The deduced amino acid sequence of CarC showed 30.3, 31.3, and 31.8% identity with TodF (P. putida F1), XylF (P. putida), and DmpD (Pseudomonas sp. CF600), respectively, which are meta-cleavage compound hydrolases from other Pseudomonads. The amino acid sequence Gly-X-Ser-X-Gly, which is highly conserved in these hydrolases, is also found in CarC. Lysates from a strain expressing enzyme in which the putative active site serine is mutated to alanine showed a significant reduction in activity.  相似文献   

18.
The first step in the degradation of dibenzofuran and dibenzo-p-dioxin by Sphingomonas sp. strain RW1 is carried out by dioxin dioxygenase (DxnA1A2), a ring-dihydroxylating enzyme. An open reading frame (fdx3) that could potentially specify a new ferredoxin has been identified downstream of dxnA1A2, a two-cistron gene (J. Armengaud, B. Happe, and K. N. Timmis, J. Bacteriol. 180:3954-3966, 1998). In the present study, we report a biochemical analysis of Fdx3 produced in Escherichia coli. This third ferredoxin thus far identified in Sphingomonas sp. strain RW1 contained a putidaredoxin-type [2Fe-2S] cluster which was characterized by UV-visible absorption spectrophotometry and electron paramagnetic resonance spectroscopy. The midpoint redox potential of this ferredoxin (E'(0) = -247 +/- 10 mV versus normal hydrogen electrode at pH 8.0) is similar to that exhibited by Fdx1 (-245 mV), a homologous ferredoxin previously characterized in Sphingomonas sp. strain RW1. In in vitro assays, Fdx3 can be reduced by RedA2 (a reductase similar to class I cytochrome P-450 reductases), previously isolated from Sphingomonas sp. strain RW1. RedA2 exhibits a K(m) value of 3.2 +/- 0.3 microM for Fdx3. In vivo coexpression of fdx3 and redA2 with dxnA1A2 confirmed that Fdx3 can serve as an electron donor for the dioxin dioxygenase.  相似文献   

19.
A cDNA encoding a serine proteinase homologue of kuruma shrimp (Marsupenaeus japonicus) was cloned. The 1257 bp cDNA encodes a 339 amino acid putative peptide, with a signal sequence of 16 amino acid residues. The deduced amino acid sequence is 42-67% similar to the immune-related serine proteinases and serine proteinase homologues of arthropods. It contains catalytic triad residues in the putative catalytic domain except for one substitution of Ser by a Gly residue. The six cysteine residues that form three disulphide bridges in most serine proteinases were conserved. The M. japonicus serine proteinase homologue was mainly expressed in haemocytes, in which expression dramatically increased after 3 days feeding with peptidoglycan at 0.2 mg kg(-1) shrimp body weight per day.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号