共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem. 相似文献
2.
Diego de Pereda Sergio Romero-Vivo Beatriz Ricarte Paolo Rossetti Francisco Javier Ampudia-Blasco 《Computer methods in biomechanics and biomedical engineering》2016,19(9):934-942
Continuous glucose monitors can measure interstitial glucose concentration in real time for closed-loop glucose control systems, known as artificial pancreas. These control systems use an insulin feedback to maintain plasma glucose concentration within a narrow and safe range, and thus to avoid health complications. As it is not possible to measure plasma insulin concentration in real time, insulin models have been used in literature to estimate them. Nevertheless, the significant inter- and intra-patient variability of insulin absorption jeopardizes the accuracy of these estimations. In order to reduce these limitations, our objective is to perform a real-time estimation of plasma insulin concentration from continuous glucose monitoring (CGM). Hovorka’s glucose–insulin model has been incorporated in an extended Kalman filter in which different selected time-variant model parameters have been considered as extended states. The observability of the original Hovorka’s model and of several extended models has been evaluated by their Lie derivatives. We have evaluated this methodology with an in-silico study with 100 patients with Type 1 diabetes during 25 h. Furthermore, it has been also validated using clinical data from 12 insulin pump patients with Type 1 diabetes who underwent four mixed meal studies. Real-time insulin estimations have been compared to plasma insulin measurements to assess performance showing the validity of the methodology here used in comparison with that formerly used for insulin models. Hence, real-time estimations for plasma insulin concentration based on subcutaneous glucose monitoring can be beneficial for increasing the efficiency of control algorithms for the artificial pancreas. 相似文献
3.
A major role of the liver is to integrate multiple signals to maintain normal blood glucose levels. The balance between glucose storage and mobilization is primarily regulated by the counteracting effects of insulin and glucagon. However, numerous signals converge in the liver to ensure energy demand matches the physiological status of the organism. Many circulating hormones regulate glycogenolysis, gluconeogenesis and mitochondrial metabolism by calcium-dependent signaling mechanisms that manifest as cytosolic Ca2+ oscillations. Stimulus-strength is encoded in the Ca2+ oscillation frequency, and also by the range of intercellular Ca2+ wave propagation in the intact liver. In this article, we describe how Ca2+ oscillations and waves can regulate glucose output and oxidative metabolism in the intact liver; how multiple stimuli are decoded though Ca2+ signaling at the organ level, and the implications of Ca2+ signal dysregulation in diseases such as metabolic syndrome and non-alcoholic fatty liver disease. 相似文献
4.
Several recent studies have demonstrated that organophosphorus insecticides (OPI) possess the potential to disrupt glucose homeostasis leading to hyperglycemia in experimental animals. The propensity of OPI to induce hyperglycemia along with oxidative stress may have far-reaching consequences on diabetic outcomes and associated complications. The primary objective of this study was to assess the potential of monocrotophos (MCP), an extensively used OPI, on hepatic and renal oxidative stress markers and dysregulation of hepatic glucose homeostasis in experimentally induced diabetic rats. Rats rendered diabetic by a single dose of streptozotocin (60 mg/kg b.w) were orally administered MCP (0.9 mg/kg b.w/d for 5 d). Monocrotophos per se caused only a marginal increase in blood glucose levels but significantly elevated the blood glucose levels and also disrupted glucose homeostasis by depleting liver glycogen content and increasing the gluconeogenetic enzyme activities in diabetic rats. Experimentally induced diabetes was also associated with alterations in antioxidant enzymes in liver and kidney. MCP markedly enhanced lipid peroxidation in kidney and altered the enzymatic antioxidant defense mechanisms in both liver and kidney of diabetic rats. Collectively our data provides evidence that MCP has the propensity to augment the oxidative stress and further disrupt glucose homeostasis in diabetic rats. 相似文献
5.
Wake GC Pleasants AB Vickers MH Sheppard AM Gluckman PD 《Mathematical biosciences》2011,229(1):109-114
A dynamical model describing the glucose-insulin physiological system was applied to an experiment on the administration of the adipokine leptin between neonatal days 3 and 13 to rats whose dams were subject to different levels of nutrition during gestation. The effect of leptin treatment on the glucose-insulin equilibrium point and on the levels of other associated metabolites showed a significant change in direction that depended on the level of prenatal nutrition. Leptin has been shown to affect two factors that affect the equilibrium levels of glucose and insulin, gluconeogenesis and insulin sensitivity. Each effect is described by a parameter in the dynamical model. Mathematical analysis shows that changes in these parameters in the manner promoted by leptin would indeed increase or decrease the glucose-insulin equilibria depending on their initial equilibrium levels which might be induced by the level of prenatal nutrition. This analysis explains the results of the leptin experiment in the context of the dynamics of the glucocorticoid system. It also proposes a physiological mechanism for the expression of plasticity in the organism based on the status of the glucose and insulin equilibria. 相似文献
6.
Diabetes Mellitus is found with increasing frequency in iron overload patients with hemochromatosis. In these conditions, the pancreas shows predominant iron overload in acini but also islet beta-cells. We assess glucose homeostasis status in iron-overloaded hepcidin-deficient mice. These mice presented with heavy pancreatic iron deposits but only in the acini. The beta-cell function was found unaffected with a normal production and secretion of insulin. The mutant mice were not diabetic, responded as the control group to glucose and insulin challenges, with no alteration of insulin signalling in the muscle and the liver. These results indicate that, beta-cells iron deposits-induced decreased insulin secretory capacity might be of primary importance to trigger diabetes in hemochromatosic patients. 相似文献
7.
Cooney GJ Lyons RJ Crew AJ Jensen TE Molero JC Mitchell CJ Biden TJ Ormandy CJ James DE Daly RJ 《The EMBO journal》2004,23(3):582-593
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention. 相似文献
8.
Léon C Freund M Latchoumanin O Farret A Petit P Cazenave JP Gachet C 《Purinergic signalling》2005,1(2):145-151
Pancreatic cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1–/– mice. In baseline conditions, P2Y1–/– mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1–/– mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1–/– mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion. 相似文献
9.
Nakamura K Yamashita T Fujiki H Aoyagi T Yamauchi J Mori T Tanoue A 《Biochemical and biophysical research communications》2011,(1):64-67
[Arg8]-vasopressin (AVP) plays a crucial role in regulating body fluid retention, which is mediated through the vasopressin V2 receptor in the kidney. In addition, AVP is involved in the regulation of glucose homeostasis via vasopressin V1A and vasopressin V1B receptors. Our previous studies demonstrated that vasopressin V1A receptor-deficient (V1AR−/−) and V1B receptor-deficient (V1BR−/−) mice exhibited hyperglycemia and hypoglycemia with hypoinsulinemia, respectively. These findings indicate that vasopressin V1A receptor deficiency results in decreased insulin sensitivity whereas vasopressin V1B receptor deficiency results in increased insulin sensitivity. In addition, vasopressin V1A and vasopressin V1B receptor double-deficient (V1ABR−/−) mice exhibited impaired glucose tolerance, suggesting that the effects of vasopressin V1B receptor deficiency do not influence the development of hyperglycemia promoted by vasopressin V1A receptor deficiency, and that the blockage of both receptors could lead to impaired glucose tolerance. However, the contributions of the entire AVP/vasopressin receptors system to the regulation of blood glucose have not yet been clarified. In this study, to further understand the role of AVP/vasopressin receptors signaling in blood glucose regulation, we assessed the glucose tolerance of AVP-deficient homozygous Brattleboro (di/di) rats using an oral glucose tolerance test (GTT). Plasma glucose and insulin levels were consistently lower in homozygous di/di rats than in heterozygous di/+ rats during the GTT, suggesting that the blockage of all AVP/vasopressin receptors resulting from the AVP deficiency could lead to enhanced glucose tolerance. 相似文献
10.
Nyman E Brännmark C Palmér R Brugård J Nyström FH Strålfors P Cedersund G 《The Journal of biological chemistry》2011,286(29):26028-26041
Type 2 diabetes is a metabolic disease that profoundly affects energy homeostasis. The disease involves failure at several levels and subsystems and is characterized by insulin resistance in target cells and tissues (i.e. by impaired intracellular insulin signaling). We have previously used an iterative experimental-theoretical approach to unravel the early insulin signaling events in primary human adipocytes. That study, like most insulin signaling studies, is based on in vitro experimental examination of cells, and the in vivo relevance of such studies for human beings has not been systematically examined. Herein, we develop a hierarchical model of the adipose tissue, which links intracellular insulin control of glucose transport in human primary adipocytes with whole-body glucose homeostasis. An iterative approach between experiments and minimal modeling allowed us to conclude that it is not possible to scale up the experimentally determined glucose uptake by the isolated adipocytes to match the glucose uptake profile of the adipose tissue in vivo. However, a model that additionally includes insulin effects on blood flow in the adipose tissue and GLUT4 translocation due to cell handling can explain all data, but neither of these additions is sufficient independently. We also extend the minimal model to include hierarchical dynamic links to more detailed models (both to our own models and to those by others), which act as submodules that can be turned on or off. The resulting multilevel hierarchical model can merge detailed results on different subsystems into a coherent understanding of whole-body glucose homeostasis. This hierarchical modeling can potentially create bridges between other experimental model systems and the in vivo human situation and offers a framework for systematic evaluation of the physiological relevance of in vitro obtained molecular/cellular experimental data. 相似文献
11.
M Shibasaki Y Shibasaki T Asano H Kajio Y Akanuma F Takaku Y Oka 《FEBS letters》1990,270(1-2):105-107
Glucose transporter (GT) has been suggested to be involved in the insulin biosynthesis. However, the functional relationship between GT and insulin biosynthesis is not well understood. In this report, we have generated rat pancreatic B cell lines (RINr) that stably overexpress a cDNA encoding the brain type GT. These cell lines showed 3- to 4-fold increase in insulin mRNA and protein. These results suggest that GT might have some relationship to the insulin biosynthesis in the pancreatic B cells. 相似文献
12.
The effects of the gastrointestinal hormone and neurotransmitter cholecystokinin (CCK8) are complex, since it exhibits both an insulinotropic and a glucagonotropic effect. We investigated CCK8 in vivo with respect to glucose fluxes (production and elimination) at both low (6 mM) and high plasma glucose levels (9 mM) using the primed constant -[3-3H]glucose infusion technique. In the presence of high glucose levels there was a dose-dependent increase in glucose elimination by CCK8. No effect of CCK8 on glucose production at a high glucose infusion rate (500 mg/kg per h) was observed in contrast to a low glucose infusion rate (100 mg/kg per h); plasma glucagon levels were elevated. All effects on glucose production and elimination were specific, since they were abolished by the CCK receptor antagonist L-364,718. In summary, glucose elimination was slightly increased by CCK8 at low glucose levels but increased to a greater extent at high glucose levels; glucose production was increased by CCK8 only at low glucose levels. Thus, CCK is a regulator of glucose homeostasis. 相似文献
13.
Bile acids are mainly recognized for their role in dietary lipid absorption and cholesterol homeostasis. However, recent progress in bile acid research suggests that bile acids are important signaling molecules that play a role in glucose homeostasis. Among the various supporting evidence, several reports have demonstrated an improvement of the glycemic index of type 2 diabetic patients treated with diverse bile acid binding resins. Herein, we review the diverse interactions of bile acids with various signaling/response pathways, including calcium mobilization and protein kinase activation, membrane receptor-mediated responses, and nuclear receptor responses. Some of the effects of the bile acids are direct through the activation of specific receptors, i.e., TGR5, CAR, VDR, and FXR, while others imply modulation of the hormonal, growth factor and/or neuromediator responses, i.e., glucagon, EGF, and acetylcholine. We also discuss recent evidence implicating the interaction of bile acids with glucose homeostasis mechanisms, with the integration of our understanding of how the signaling mechanisms modulated by bile acid could regulate glucose metabolism. 相似文献
14.
Glucose homeostasis is controlled by the islets of Langerhans which are equipped with α-cells increasing the blood glucose level, β-cells decreasing it, and δ-cells the precise role of which still needs identifying. Although intercellular communications between these endocrine cells have recently been observed, their roles in glucose homeostasis have not been clearly understood. In this study, we construct a mathematical model for an islet consisting of two-state α-, β-, and δ-cells, and analyze effects of known chemical interactions between them with emphasis on the combined effects of those interactions. In particular, such features as paracrine signals of neighboring cells and cell-to-cell variations in response to external glucose concentrations as well as glucose dynamics, depending on insulin and glucagon hormone, are considered explicitly. Our model predicts three possible benefits of the cell-to-cell interactions: First, the asymmetric interaction between α- and β-cells contributes to the dynamic stability while the perturbed glucose level recovers to the normal level. Second, the inhibitory interactions of δ-cells for glucagon and insulin secretion prevent the wasteful co-secretion of them at the normal glucose level. Finally, the glucose dose-responses of insulin secretion is modified to become more pronounced at high glucose levels due to the inhibition by δ-cells. It is thus concluded that the intercellular communications in islets of Langerhans should contribute to the effective control of glucose homeostasis. 相似文献
15.
Gatford KL De Blasio MJ Thavaneswaran P Robinson JS McMillen IC Owens JA 《American journal of physiology. Endocrinology and metabolism》2004,286(6):E1050-E1059
Glucose tolerance declines with maturation and aging in several species, but the time of onset and extent of changes in insulin sensitivity and insulin secretion and their contribution to changes in glucose tolerance are unclear. We therefore determined the effect of maturation on glucose tolerance, insulin secretion, and insulin sensitivity in a longitudinal study of male and female sheep from preweaning to adulthood, and whether these measures were related across age. Glucose tolerance was assessed by intravenous glucose tolerance test (IVGTT, 0.25 g glucose/kg), insulin secretion as the integrated insulin concentration during IVGTT, and insulin sensitivity by hyperinsulinemic-euglycemic clamp (2 mU insulin.kg(-1).min(-1)). Glucose tolerance, relative insulin secretion, and insulin sensitivity each decreased with age (P < 0.001). The disposition index, the product of insulin sensitivity, and various measures of insulin secretion during fasting or IVGTT also decreased with age (P < 0.001). Glucose tolerance in young adult sheep was independently predicted by insulin sensitivity (P = 0.012) and by insulin secretion relative to integrated glucose during IVGTT (P = 0.005). Relative insulin secretion before weaning was correlated positively with that in the adult (P = 0.023), whereas glucose tolerance, insulin sensitivity, and disposition indexes in the adult did not correlate with those at earlier ages. We conclude that glucose tolerance declines between the first month of life and early adulthood in the sheep, reflecting decreasing insulin sensitivity and absence of compensatory insulin secretion. Nevertheless, the capacity for insulin secretion in the adult reflects that early in life, suggesting that it is determined genetically or by persistent influences of the perinatal environment. 相似文献
16.
17.
Xiaojiao Zheng Tianlu Chen Runqiu Jiang Aihua Zhao Qing Wu Junliang Kuang Dongnan Sun Zhenxing Ren Mengci Li Mingliang Zhao Shouli Wang Yuqian Bao Huating Li Cheng Hu Bing Dong Defa Li Jiayu Wu Jialin Xia Wei Jia 《Cell metabolism》2021,33(4):791-803.e7
- Download : Download high-res image (152KB)
- Download : Download full-size image
18.
《Biochemical and biophysical research communications》2020,521(2):441-448
Previous work have shown several key brain nuclei involved in acute psychological stress and glucose homeostasis. Acute stress influences glucose metabolism via released stress hormones by activating the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Little is known about the brain nuclei which response to peripheral glucose alteration are either abundant with glucosesensing neurons or the activations are secondary to stress. Here we profile and compare the brain nuclei that response to stress and glucose homeostasis in mouse models of acute restraint stress, glucose and 2-DG injections respectively. Our present work provide a comprehensive depiction on key brain nuclei involved in CNS control of stress and glucose homeostasis, which gives clue for functional identification of brain nuclei that regulate glucose homeostasis under stress. 相似文献
19.
J. Brandão-Neto J. G. H. Vieira T. Shuhama E. M. K. Russo R. V. Piesco P. R. Curi 《Biological trace element research》1990,24(1):73-82
Hyperzincemia has been reported to cause alterations in the homeostasis of glycid metabolism. To determine this effect on plasma glucose and insulin levels, we studied 36 normal individuals of both sexes aged 22–26 y after a 12-h fast. The tests were initiated at 7:00am when an antecubital vein was punctured and a device for infusion was installed and maintained with physiological saline. Zinc was administered orally at 8:00am. Subjects were divided into an experimental group of 22 individuals who received doses of 25, 37.5, and 50 mg of zinc and a control group of 14 individuals. Blood samples were collected over a period of 240 min after the basal samples (−30 and 0 min). We did not detect any change in plasma glucose or insulin levels, a fact that we attribute either to the ineffectiveness of the 50 mg dose of zinc or to the lack of human response to the acute action of this trace element. The individuals who ingested zinc showed a significant fall in plasma cortisol, probably caused by the action of this trace element. 相似文献