首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling.  相似文献   

4.
This study examined whether focal adhesion kinase (FAK) plays a role in the differentiation of C(2)C(12) myoblasts into myotubes. Differentiation of C(2)C(12) myoblasts induced by switch to differentiation culture medium was accompanied by a transient reduction of FAK phosphorylation at Tyr-397 (to approximately 50%, at 1 and 2 h), followed by an increase thereafter (to 240% up to 5 days), although FAK protein expression remained unchanged. FAK and phosphorylated FAK were found at the edge of lamellipodia in proliferating cells, whereas the later increase in FAK phosphorylation in differentiating cells was accompanied by its preferential location at the tip of well-organized actin stress fibers. Hyperexpression of FAK autophosphorylation site (Tyr-397) mutant (MT-FAK) reduced FAK phosphorylation at Tyr-397 in proliferating cells and was accompanied by reduction of cyclin D1 and increase of myogenin expression. These cells failed to progress to myotubes in differentiation medium. In contrast, hyperexpression of a wild-type FAK construction (WT-FAK) increased baseline and abolished the transient reduction of FAK phosphorylation at Tyr-397 in serum-starved C(2)C(12) cells. Cells transfected with WT-FAK failed to reduce cyclin D1 and to increase myogenin expression, as well as to progress to terminal differentiation in differentiation medium. These data indicate that FAK signaling plays a critical role in the control of cell cycle as well as in the progression of C(2)C(12) cells to terminal differentiation. Transient inhibition of FAK phosphorylation at Tyr-397 contributes to trigger the myogenic genetic program, but its later activation is also central to terminal differentiation into myotubes.  相似文献   

5.
The expression of acetylcholinesterase (AChE) is markedly increased during myogenic differentiation of C2C12 myoblasts to myotubes; the expression is mediated by intrinsic factor(s) during muscle differentiation. In order to analyze the molecular mechanisms regulating AChE expression during myogenic differentiation, a approximately 2.2-kb human AChE promoter tagged with a luciferase reporter gene, namely pAChE-Luc, was stably transfected into C2C12 cells. The profile of promoter-driven luciferase activity during myogenic differentiation of C2C12 myotubes was found to be similar to that of endogenous expression of AChE catalytic subunit. The increase of AChE expression was reciprocally regulated by a cAMP-dependent signaling pathway. The level of intracellular cAMP, the activity of cAMP-dependent protein kinase, the phosphorylation of cAMP-responsive element binding protein and the activity of cAMP- responsive element (CRE) were down-regulated during the myotube formation. Mutating the CRE site of human AChE promoter altered the original myogenic profile of the promoter activity and its suppressive response to cAMP. In addition, the suppressive effect of the CRE site is dependent on its location on the promoter. Therefore, our results suggest that a cAMP-dependent signaling pathway serves as a suppressive element in regulating the expression of AChE during early myogenesis.  相似文献   

6.
Hic-5, a focal adhesion protein, has been implicated in cellular senescence and differentiation. In this study, we examined its involvement in myogenic differentiation. The hic-5 expression level in growing C2C12 myoblasts increased slightly on the first day and then gradually decreased until no hic-5 was detectable after 7 days of differentiation. In vivo, its expression level declined in the thigh and the calf skeletal muscle of mouse embryos after birth. The introduction of an antisense expression vector of hic-5 into C2C12 cells decreased the number of clones expressing the myosin heavy chain (MHC) upon exposure to the differentiation medium. In the cloned cells with low levels of hic-5, the efficiency of myotube formation was significantly reduced. The expression levels of MyoD, myogenin, MHC and p21 were also reduced in these clones. The results suggested that hic-5 plays a role in the initial stage of myogenic differentiation.  相似文献   

7.
The effect of hypoxia on 3T3-L1 cell differentiation was examined in confluent cultures incubated with differentiation medium (DM) followed by incubation in growth medium (GM). Control cultures remained in GM throughout the incubation period. Eight days after the incubation, cells were assessed either for changes in morphology by staining with Oil Red O/hematoxylin or harvested to measure protein kinase C activity. Morphological examination of stained cells showed almost complete differentiation of normoxic cells to adipocytes when exposed to DM. By contrast hypoxia caused a dramatic inhibition of differentiation under similar media conditions with only 34 ± 4% of cells accumulating fat deposits. Cultures sustained in GM under normoxic or hypoxic conditions were devoid of any fat deposits, reflecting an undifferentiated phenotype. Normoxic cells exposed to DM exhibited a significantly lower membrane to cytosolic ratio of protein kinase C in comparison with cells maintained in GM, which is consistent with differentiated and undifferentiated phenotypes, respectively. In comparison with normoxic cells incubated in DM, cells exposed to hypoxia under similar media conditions exhibited a significantly higher membrane to cytosolic ratio of protein kinase C, indicating sustained activation of the enzyme. In addition, cells in differentiation medium exposed to hypoxia in the presence of the protein kinase C inhibitors staurosporine or H7 exhibited a significant increase in the number of fat accumulating cells when compared with hypoxic controls. These studies indicate that chronic hypoxia impairs the differentiation of 3T3-L1 cells to adipocytes in association with the sustained activation of protein kinase C, which appears to play a role in mediating this process. © 1994 Wiley-Liss, Inc.  相似文献   

8.
9.
10.
11.
Myogenic differentiation is a highly orchestrated, multistep process that is coordinately regulated by growth factors and cell adhesion. We show here that integrin-linked kinase (ILK), an intracellular integrin- and PINCH-binding serine/threonine protein kinase, is an important regulator of myogenic differentiation. ILK is abundantly expressed in C2C12 myoblasts, both before and after induction of terminal myogenic differentiation. However, a noticeable amount of ILK in the Triton X-100-soluble cellular fractions is significantly reduced during terminal myogenic differentiation, suggesting that ILK is involved in cellular control of myogenic differentiation. To further investigate this, we have overexpressed the wild-type and mutant forms of ILK in C2C12 myoblasts. Overexpression of ILK in the myoblasts inhibited the expression of myogenic proteins (myogenin, MyoD, and myosin heavy chain) and the subsequent formation of multinucleated myotubes. Furthermore, mutations that eliminate either the PINCH-binding or the kinase activity of ILK abolished its ability to inhibit myogenic protein expression and allowed myotube formation. Although overexpression of the ILK mutants is permissive for the initiation of terminal myogenic differentiation, the myotubes derived from myoblasts overexpressing the ILK mutants frequently exhibited an abnormal morphology (giant myotubes containing clustered nuclei), suggesting that ILK functions not only in the initial decision making process, but also in later stages (fusion or maintaining myotube integrity) of myogenic differentiation. Additionally, we show that overexpression of ILK, but not that of the PINCH-binding defective or the kinase-deficient ILK mutants, prevents inactivation of MAP kinase, which is obligatory for the initiation of myogenic differentiation. Finally, inhibition of MAP kinase activation reversed the ILK-induced suppression of myogenic protein expression. Thus, ILK likely influences the initial decision making process of myogenic differentiation by regulation of MAP kinase activation.  相似文献   

12.
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.  相似文献   

13.
Using a subtractive cDNA library hybridization approach, we found that receptor interacting protein 2 (RIP2), a tumor necrosis factor receptor 1 (TNFR-1)-associated factor, is a novel early-acting gene that decreases markedly in expression during myogenic differentiation. RIP2 consists of three domains: an amino-terminal kinase domain, an intermediate domain, and a carboxy-terminal caspase activation and recruitment domain (CARD). In some cell types, RIP2 has been shown to be a potent inducer of apoptosis and an activator of NF-kappa B. To analyze the function of RIP2 during differentiation, we transduced C2C12 myoblasts with retroviral vectors to constitutively produce RIP2 at high levels. When cultured in growth medium, these cells did not show an enhanced rate of proliferation compared to controls. When switched to differentiation medium, however, they continued to proliferate, whereas control cells withdrew from the cell cycle, showed increased expression of differentiation markers such as myogenin, and began to differentiate into multinucleated myotubes. The complete RIP2 protein appeared to be necessary to inhibit myogenic differentiation, since two different deletion mutants lacking either the amino-terminal kinase domain or the carboxy-terminal CARD had no effect. A mutant deficient in kinase activity, however, had effects similar to wild-type RIP2, indicating that phosphorylation was not essential to the function of RIP2. Furthermore, RIP proteins appeared to be important during myogenic differentiation in vivo, as we detected a marked decrease in expression of the RIP2 homolog RIP in several muscle tissues of the dystrophic mdx mouse, a model for continuous muscle degeneration and regeneration. We conclude that RIP proteins can act independently of TNFR-1 stimulation by ligand to modulate downstream signaling pathways, such as activation of NF-kappa B. These results implicate RIP2 in a previously unrecognized role: a checkpoint for myogenic proliferation and differentiation.  相似文献   

14.
15.
以C2C12成肌细胞为模型,在分化培养基中诱导C2C12建立体外肌性细胞分化模型.以poly (A)3′-端加尾和实时定量PCR方法研究miR-101a在C2C12细胞分化过程中的表达情况.结果发现,在细胞转入分化培养基进行肌性分化的1-5 d中,miR-101a的表达量逐渐增加,提示miR-101a可能在肌肉发生中发挥调控作用.  相似文献   

16.
C17-S1-D-T984 (to be referred to as T984) is a myogenic clonal cell line isolated from a mouse teratocarcinoma. T984 exhibits phenotypic instability since it gives rise not only to myogenic but also to fibro-adipogenic and fibroblastic clones. A cell line of each clone type has been established and studied with respect to (1) phenotypic expression and stability; and (2) growth and differentiation in serum-free and serum-supplemented media. In both respects, marked differences between the three cell lines were observed. All three cell lines respond by increased growth in serum-free media to insulin, transferrin, fibroblast growth factor (FGF) and the serum-spreading factor of Holmes. The fibroblastic and the fibro-adipogenic cell lines can both be grown indefinitely in a serum-free medium which contains the above factors. The fibro-adipogenic cell line, which differentiates in serum-supplemented medium, exhibits very limited differentiation in the absence of serum; the serum factor(s) required for adipogenic differentiation is (are) probably proteins of molecular weight superior to 10 000. In direct contrast, the myogenic cell line exhibits limited growth in serum-free medium but readily differentiates under these conditions. Moreover, myogenic differentiation could be obtained in the defined medium at very low densities and was not influenced by the addition of medium conditioned by cells seeded at high densities. Thus, in this system, muscular differentiation is apparently independent of diffusible endogenous or exogenous factors and is probably triggered by the arrest of growth. While our results do not explain the reason why T984 exhibits phenotypic instability, they do indicate that this clonal cell line and its clonal derivatives could be used to identify the factors that influence the growth and the differentiation of cells of different mesenchymal phenotypes. The possible relationship of phenotypic instability to muscular dystrophies is also discussed.  相似文献   

17.
18.
Immunocytochemical analysis of small myogenic clones was used to compare the effects of fresh medium (FM) and conditioned medium (CM) on muscle differentiation. In order to compare the same population of cells, clones were initiated in FM and then switched to either new FM or to CM. Clones were fixed at 12-hour intervals up to 76 hours, then assayed for the presence of post-mitotic myoblasts by immunoperoxidase staining for muscle myosin heavy chain (MHC) or M-creatine kinase (MCK). In both media, myogenic cells occurred predominantly in homogeneous positive clones (all cells (MHC +/MCK +) which contained 2" cells. At 76 hours, the percentages of 1-, 2-, and 4-cell positive clones did not differ statistically in the two conditions; however, the percentages of 8- and 16-cell positive clones were significantly reduced in CM, and the percentages of small negative clones were concomitantly increased. We conclude from these data that CM affects myogenesis by slowing progression through a predetermined lineage rather than by changing the number of mitoses an individual cell will undergo before terminally differentiating. These results further support the idea that progress through the myogenic lineage is mediated by cell divisions.  相似文献   

19.
We have studied expression and function of neurotrophins and their receptors during myogenic differentiation of C2C12 cells, a clonal cell line derived from mouse muscle that is capable of in vitro differentiation. The genes coding for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and their common low-affinity receptor p75neurotrophin receptor (p75NTR) were shown to be expressed in C2C12 myoblasts and downregulated during myogenic differentiation and fusion into myotubes. Cocultures with dorsal root ganglia from day 8 chick embryos revealed neurite-promoting activities of C2C12 cells that ceased with myogenic differentiation. These data suggest a temporal and developmental window for the effect of myogenic cell-derived neurotrophins on neuronal as well as on myogenic cell populations. NGF was shown to increase DNA synthesis and cell growth of C2C12 myoblasts and to enhance myogenic differentiation in this cell line. We present evidence that NGF-mediated processes take place at stages preceding myogenic differentiation. Enhanced muscle differentiation was also seen in p75NTR-overexpressing C2C12 myoblasts which maintained high levels of receptors but ceased to produce NGF during differentiation. In contrast, when exogenous NGF was present at the onset of myogenic differentiation of receptor-overexpressing cells, muscle cell development was strongly repressed. This indicates that downregulation of p75NTR is necessary for guiding myogenic cells towards terminal differentiation. Since none of the trk high-affinity neurotrophin receptors could be demonstrated in C2C12 cells, we conclude that NGF mediates its nonneurotrophic effect via its low-affinity receptor in an autocrine fashion. J. Cell. Physiol. 176:10–21, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
To examine the role of cell–cell communication via gap junctions in controlling proliferation and differentiation we transfected the malignant trophoblast cell line Jeg-3, which exhibits extremely low cell–cell communication mediated by endogenously expressed connexin40, with connexin26, connexin40, and connexin43, respectively.In vitrogrowth of all cell clones transfected with connexin genes was significantly reduced compared to controls. This effect corresponded to a significant increase in total junctional conductance of all clones. Single-channel conductances for channels formed by the transfected connexins were in the range of the values published previously. Though total junctional conductance varied highly among clones and even within one clone, differentiation of the cells indicated by β-hCG secretion was most prominent in the clones that revealed the largest amount of well-coupled cell pairs. Connexin26 channels enable cells of one clone to reduce drastically growth rate and produce significantly higher secretion of β-hCG. Connexin43 had only moderate effects on the differentiation properties of Jeg-3 cells. These findings suggest that restoration of cell–cell communication plays a role in growth reduction and in differentiation of tumor cells and that different channel proteins might have different effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号