首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The transposable element Tdd-3 from D. discoideum has been described originally in 1984 (Poole and Firtel, 1984). Additional copies of this element were discovered in the course of a recent study on tRNA gene organization in D. discoideum. Five out of 24 independently isolated tRNA genes proved to be associated with Tdd-3 elements. The surprising observation that all the elements always occurred within the 3'-flanking sequences of the Dictyostelium tRNA genes suggested the possibility of a general position specific integration of Tdd-3 elements upon transposition. Therefore we isolated additional Tdd-3 elements from various genomic D. discoideum libraries in order to test this hypothesis. Several new Tdd-3 elements were found associated with various tRNA genes. Additionally we identified Tdd-3 elements organized in tandem array or in association with RED (Repetitive Element of Dictyostelium), another repetitive element recently identified by our laboratory. In all cases a B-box equivalent of the eukaryotic gene-internal RNA polymerase III promoter was identified upstream of all Tdd-3 elements.  相似文献   

3.
Summary Different wild-type isolates of Dictyostelium discoideum exhibit extensive polymorphism in the length of restriction fragments carrying tRNA genes. These size differences were used to study the organisation of two tRNA gene families which encode a tRNAVal(GUU) and a tRNAVal(GUA) gene. The method used involved a combination of classitics. The tRNA genes were mapped to specific linkage groups (chromosomes) by correlating the presence of polymorphic DNA bands that hybridized with the tRNA gene probes with the presence of genetic markers for those linkage groups. These analyses established that both of the tRNA gene families are dispersed among sites on several of the chromosomes. Information of nine tRNAVal(GUU) genes from the wild-type isolate NC4 was obtained: three map to linkage group I (C, E, F,), two map to linkage group II (D, I), one maps to linkage group IV (G), one, which corresponds to the cloned gene, maps to either linkage group III or VI (B), and two map to one of linkage groups III, VI or VIII (A, H). Six tRNAVal(GUA) genes from the NC4 isolate were mapped; one to linkage group I (D), two to linkage group III, VI or VII (B, C) and three to linkage group VII or III (A, E, F).  相似文献   

4.
5.
6.
An enzyme activity transferring methyl groups from S-adenosylmethionine to endogenous tRNA was detected in the cytosol of aggregative Dictyostelium discoideum amoebae. This enzyme was purified more than 1000-fold and was characterized as a tRNA (adenine-N1-)-methyltransferase. Kinetic analysis yielded a K0.5 for S-adenosylmethionine of 0.27 microM and competitive inhibition by S-adenosylhomocysteine showed an I0.5 of 0.26 microM. The tRNA methyltransferase activity was stimulated by monovalent cations and the pH optimum was 7.3. tRNAs isolated from D. discoideum as well as from other eucaryotic sources could be methylated only to a minor extent. In contrast, Escherichia coli tRNA accepted up to 0.6 mol methyl group/mol tRNA, suggesting that the target nucleotide is unmethylated in procaryotic tRNA, but is commonly methylated in tRNAs from eucaryotic organisms. The activity of the methyltransferase increased 4-6-fold during cell differentiation from the vegetative to the aggregative stage.  相似文献   

7.
8.
Genes with sequence similarity to the yeast tRNA(His) guanylyltransferase (Thg1) gene have been identified in all three domains of life, and Thg1 family enzymes are implicated in diverse processes, ranging from tRNA(His) maturation to 5'-end repair of tRNAs. All of these activities take advantage of the ability of Thg1 family enzymes to catalyze 3'-5' nucleotide addition reactions. Although many Thg1-containing organisms have a single Thg1-related gene, certain eukaryotic microbes possess multiple genes with sequence similarity to Thg1. Here we investigate the activities of four Thg1-like proteins (TLPs) encoded by the genome of the slime mold, Dictyostelium discoideum (a member of the eukaryotic supergroup Amoebozoa). We show that one of the four TLPs is a bona fide Thg1 ortholog, a cytoplasmic G(-1) addition enzyme likely to be responsible for tRNA(His) maturation in D. discoideum. Two other D. discoideum TLPs exhibit biochemical activities consistent with a role for these enzymes in mitochondrial 5'-tRNA editing, based on their ability to efficiently repair the 5' ends of mitochondrial tRNA editing substrates. Although 5'-tRNA editing was discovered nearly two decades ago, the identity of the protein(s) that catalyze this activity has remained elusive. This article provides the first identification of any purified protein that appears to play a role in the 5'-tRNA editing reaction. Moreover, the presence of multiple Thg1 family members in D. discoideum suggests that gene duplication and divergence during evolution has resulted in paralogous proteins that use 3'-5' nucleotide addition reactions for diverse biological functions in the same organism.  相似文献   

9.
Mutations in MYOC gene encoding myocilin are responsible for primary open-angle glaucoma (POAG). In order to search for protein(s) that can interact with myocilin, we screened a human skeletal muscle cDNA library using yeast two-hybrid system and identified flotillin-1, a structural protein of lipid raft that is detergent-resistant and a liquid ordered microdomain, as a protein interacting with myocilin. The interaction was confirmed by in vitro glutathione S-transferase pulldown and in vivo co-immunoprecipitation studies. In yeast two-hybrid assay, the C-terminus of myocilin, an olfactomedin-like domain in which most mutations related to POAG are scattered, was found to be necessary and sufficient for the interaction. However, myocilins with mutations such as G364V, K423E, and Y437H on the domain failed to interact with flotillin-1. Although the physiological significance of the interaction has yet to be elucidated, our results showed that the alteration of the interaction by mutations in MYOC might be a key factor of the pathogenesis of POAG.  相似文献   

10.
In the present study D. discoideum has been used as a model organism to understand the role of poly (ADP-ribose) polymerase (PARP) in caspase independent paraptotic cell death pathways. D. discoideum lacks caspases and Bcl-2 family proteins; nevertheless it has 9 potential genes for PARP. PARP has been known to get activated in various cell death associated diseases. In this study kinetics of cell death induced by staurosporine (STS), a bacterial alkaloid, was established to unravel the role of PARP. It was found that STS induced cell death in D. discoideum did not involve PARP activation, however it involved cathepsin D. Results indicated that an alternative mechanism may be existing in D. discoideum that lacks Bcl-2 family proteins for STS induced cell death that evades Bax involvement.  相似文献   

11.
The purification, cloning, and complete cDNA-derived sequence of a 17-kDa protein of Dictyostelium discoideum are described. This protein binds to F-actin in a pH-dependent and saturable manner. It induces actin polymerization in the absence of Mg2+ or K+, and is enriched in the submembranous region of the amoeboid cells as indicated by immunofluorescence labeling of cryosections. The mRNA as well as the protein are present throughout growth and all stages of development. The protein is detected in both soluble and particulate fractions of the cells. From a plasma membrane-enriched fraction, minor amounts of the protein are stepwise solubilized with 1.5 M KCl, 0.1 M NaOH, and Triton X-100, but most of the protein is only solubilized with 1% sodium dodecyl sulfate. As judged by the apparent molecular mass in sodium dodecyl sulfate-polyacrylamide gels, immunological cross-reactivity, and two-dimensional electrophoresis, the 17-kDa proteins from the soluble and particulate fraction resemble each other. The cDNA sequence does not reveal any signal peptide, trans-membrane region, or N-glycosylation site. Southern blots hybridized with a cDNA probe that spans the entire coding region show that the 17-kDa protein is encoded by a single gene. The most characteristic feature of the protein is its high content of 31 histidine residues out of 118 amino acids. We designate this protein as hisactophilin and suggest that this histidine-rich protein responds in its actin-binding activity to changes in cellular pH upon chemotactic signal reception.  相似文献   

12.
Discoidin-binding polysaccharide from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Extracts of Dictyostelium discoideum grown axenically in a chemically defined medium were evaluated for binding to discoidin I and discoidin II, endogenous lectins of this slime mold. Binding activity was measured by competitive inhibition of 125I-lactosyl-bovine serum albumin binding to the immobilized lectins. With the solubilization procedure used extracts of vegetative cells and of early aggregates had no significant inhibitory activity, but an abundant discoidin-binding substance was detected in late aggregates and fruiting bodies. This material was purified by ethanol and acid precipitation followed by precipitation with discoidin. It is a polysaccharide composed of 77% galactose, 15% N-acetylgalactosamine, 5% glucose, and 3% N-acetylglucosamine and may be a biologically functional ligand for the slime mold lectins, in particular discoidin II. Use of axenic cells was critical in these experiments, since extracts of Escherichia coli and Klebsiella aerogenes, commonly used as food for D. discoideum, were found to contain substances that react with discoidin. This would complicate isolation of endogenous discoidin ligands from cells raised on bacteria.  相似文献   

13.
A protein kinase with unusual characteristics has been found in Dictyostelium discoideum. This kinase can use histone H1 as exogenous substrate, and the activity is stimulated by phospholipids, but not by Ca2+. This enzyme has been partially purified by using chromatography on DEAE-cellulose DE-52, spermine-agarose and phosphatidylserine-polyacrylamide. The protein kinase activity is very labile, even in the presence of protease inhibitors, making further purification difficult. In the activity-containing fractions, an endogenous protein of 140 kDa is labelled in vitro with [gamma-32P]ATP under conditions in which intramolecular rather than intermolecular reactions are favoured. This protein is labelled only in the presence of phospholipids, but not of Ca2+. We propose that the 140 kDa phosphoprotein might be the autophosphorylated enzyme.  相似文献   

14.
Actin filaments and microtubules are two major cytoskeletal systems involved in wide cellular processes, and the organizations of their filamentous networks are regulated by a large number of associated proteins. Recently, evidence has accumulated for the functional cooperation between the two filament systems via associated proteins. However, little is known about the interactions of the kinesin superfamily proteins, a class of microtubule-based motor proteins, with actin filaments. Here, we describe the identification and characterization of a novel kinesin-related protein named DdKin5 from Dictyostelium. DdKin5 consists of an N-terminal conserved motor domain, a central stalk region, and a C-terminal tail domain. The motor domain showed binding to microtubules in an ATP-dependent manner that is characteristic of kinesin-related proteins. We found that the C-terminal tail domain directly interacts with actin filaments and bundles them in vitro. Immunofluorescence studies showed that DdKin5 is specifically enriched at the actin-rich surface protrusions in cells. Overexpression of the DdKin5 protein affected the organization of actin filaments in cells. We propose that a kinesin-related protein, DdKin5, is a novel actin-bundling protein and a potential cross-linker of actin filaments and microtubules associated with specific actin-based structures in Dictyostelium.  相似文献   

15.
The unicellular, as well as multicellular stages of Dictyostelium discoideum’s life cycle, make it an excellent model system for cell type determination, differentiation, development, and cell death studies. Our preliminary results show the involvement of poly (ADP-ribose) polymerase-1 (PARP-1) during D. discoideum growth by its constitutive downregulation as well as by its ortholog overexpression. The current study now analyzes and strengthens the role of the PARP-1 ortholog in cellular proliferation of D. discoideum. ADPRT1A was knocked out (KO) from D. discoideum and studied for its effect on cell growth, cell cycle, morphology, and oxidative stress. The present findings show that ADPRT1A KO ( A KO) cells exhibited reduced cellular proliferation, stressed phenotype, and cell cycle arrest in G2-M phase. Under oxidative stress, A KO cells exhibited slower growth and DNA damage. This is the first report where the involvement of ADPRT1A in growth in D. discoideum is established.  相似文献   

16.
Characterization of a novel calmodulin from Dictyostelium discoideum   总被引:7,自引:0,他引:7  
We have purified calmodulin from the eukaryotic microorganism Dictyostelium discoideum (Clarke, M., Bazari, W. L., and Kayman, S. C. (1980) J. Bacteriol. 141, 397-400) and have compared it to calmodulin purified from bovine brain. The two proteins behaved almost identically during fractionation on ion exchange and gel filtration columns and on isoelectric focusing gels. Dictyostelium calmodulin had one-third the specific activity of brain calmodulin in the Ca2+-dependent activation of brain cyclic nucleotide phosphodiesterase; this activation was inhibited for both proteins by 25 microM trifluoperazine. Dictyostelium calmodulin also activated erythrocyte (Ca2+ + Mg2+)-ATPase and interacted with the inhibitory subunit of skeletal muscle troponin. Competition radioimmune assays showed that Dictyostelium calmodulin could compete with brain calmodulin for antibodies to brain calmodulin. These similarities indicate a close relationship between Dictyostelium and brain calmodulin and suggest that the functional capabilities of the protein have been conserved even among evolutionarily distant species. However, substantial differences in primary structure were detected by amino acid analyses and peptide mapping. Most interesting is the lack of trimethyllysine in Dictyostelium calmodulin. This unusual amino acid, which is commonly found in calmodulins, is therefore not essential for interaction between calmodulin and the calmodulin-regulated proteins tested here.  相似文献   

17.
We have isolated and partially characterized an acid endonuclease activity from the cellular slime mold, Dictyostelium discoideum. This activity comprises more than 90% of the nonspecific DNA-endonuclease activity of the vegetative cells. Its molecular weight is about 44 000, and its activity is enhanced 7-fold by Mg2+. The pH optimum for the nicking activity depends upon NaCl concentrations, being at pH 5.0 in 207 mM NaCl, and at pH 5.8 in 7 mM NaCl. Large quantities of this enzyme activity are released into the growth medium or buffer, with detectable amounts appearing within 15 min of incubation.  相似文献   

18.
E Boy-Marcotte  M Jacquet 《Gene》1982,20(3):433-439
Dictyostelium discoideum DNA fragments have been inserted into the chimeric bacterium-yeast plasmid YEp13. Recombinant plasmids were used to transform yeast using a strain of Saccharomyces cerevisiae deficient in OMP decarboxylase activity. Several clones were selected for growth in uracil-free medium. One clone was further analysed and contains a plasmid with a segment of D. discoideum DNA which complements a yeast ura3 mutation.  相似文献   

19.
Rajawat J  Vohra I  Mir HA  Gohel D  Begum R 《The FEBS journal》2007,274(21):5611-5618
Dictyostelium discoideum, a unicellular eukaryote, exhibits multicellularity upon nutrient starvation and is a good model system for developmental studies, and for the study of various signal transduction pathways. Reactive oxygen species at low doses act as signaling molecules; however, at high doses they are known to cause DNA damage that results in the activation of poly(ADP-ribose) polymerase (PARP). We have earlier reported the high resistance of the unicellular stage of D. discoideum to oxidative stress, and we now show the response of this organism to oxidative stress and the role of PARP during development. We used hydroxylamine (HA) to induce in situ generation of H(2)O(2) and monitored the effect of benzamide, a PARP inhibitor, on oxidative stress-induced changes in D. discoideum development. Interestingly, oxidative stress resulted in PARP activation within 5 min that was inhibited by benzamide. Oxidative stress-induced delay in developmental pattern was also partially restored by benzamide. We studied the long-term effects of PARP inhibition under oxidative stress, and our results demonstrated that spores formed under HA stress exhibited significant delay in germination in comparison to benzamide-pretreated HA-stressed cells. However, second-generation cells showed normal development, signifying that PARP inhibition has no deleterious effect on D. discoideum development under oxidative stress.  相似文献   

20.
The cellular slime mold Dictyostelium discoideum is an attractive system for studying the roles of microtubule-based motility in cell development and differentiation. In this work, we report the first molecular characterization of kinesin-related proteins (KRPs) in Dictyostelium. A PCR-based strategy was used to isolate DNA fragments encoding six KRPs, several of which are induced during the developmental program that is initiated by starvation. The complete sequence of one such developmentally regulated KRP (designated K7) was determined and found to be a novel member of the kinesin superfamily. The motor domain of K7 is most similar to that of conventional kinesin, but unlike conventional kinesin, K7 is not predicted to have an extensive α-helical coiled-coil domain. The nonmotor domain is unusual and is rich in Asn, Gln, and Thr residues; similar sequences are found in other developmentally regulated genes in Dictyostelium. K7, expressed in Escherichia coli, supports plus end–directed microtubule motility in vitro at a speed of 0.14 μm/s, indicating that it is a bona fide motor protein. The K7 motor is found only in developing cells and reaches a peak level of expression between 12 and 16 h after starvation. By immunofluorescence microscopy, K7 localizes to a membranous perinuclear structure. To examine K7 function, we prepared a null cell line but found that these cells show no gross developmental abnormalities. However, when cultivated in the presence of wild-type cells, the K7-null cells are mostly absent from the prestalk zone of the slug. This result suggests that in a population composed largely of wild-type cells, the absence of the K7 motor protein interferes either with the ability of the cells to localize to the prestalk zone or to differentiate into prestalk cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号