首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis. Received: 20 September 1997 / Accepted: 8 October 1997  相似文献   

2.
Mutations in three loci influencing the development of bristles and hairs were detected in experiments with strains containing either a mobilized Stalker or a mobilized P-element. The mutations in two genes, suppressor of scute and putative microchaete, modify phenotypic expression of mutations in the scute locus. In particular, su(sc) mutations suppress the sc-phenotype in the scutellum and enhance the Hw-phenotype in the thorax. Mutations in the third gene, pseudoscute, lead to reduction of all bristles and hairs. The latter locus seems to control the development of bristles independently of the achaete-scute complex control.  相似文献   

3.
4.
5.

Background  

The regulation of proneural gene expression is an important aspect of neurogenesis. In the study of the Drosophila proneural genes, scute and atonal, several themes have emerged that contribute to our understanding of the mechanism of neurogenesis. First, spatial complexity in proneural expression results from regulation by arrays of enhancer elements. Secondly, regulation of proneural gene expression occurs in distinct temporal phases, which tend to be under the control of separate enhancers. Thirdly, the later phase of proneural expression often relies on positive autoregulation. The control of these phases and the transition between them appear to be central to the mechanism of neurogenesis. We present the first investigation of the regulation of the proneural gene, amos.  相似文献   

6.
In the embryonic ventral neuroectoderm of Drosophila melanogaster the proneural genes achaete, scute, and lethal of scute are expressed in clusters of cells from which the neuroblasts delaminate in a stereotyped orthogonal array. Analyses of the ventral neuroectoderm before and during delamination of the first two populations of neuroblasts show that cells in all regions of proneural gene activity change their form prior to delamination. Furthermore, the form changes in the neuroectodermal cells of embryos lacking the achaete-scute complex, of embryos mutant for the neurogenic gene Delta, and of embryos overexpressing l’sc suggest that these genes are responsible for most of the morphological alterations observed. Received: 20 August 1999 / Accepted: 3 November 1999  相似文献   

7.
8.
9.
10.
11.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. Differences in the spatial expression of the proneural gene scute correlate with the positions of bristles in those species looked at so far. However, the examination of a number of genes encoding trans-regulatory factors, such as pannier, stripe, u-shaped, caupolican and wingless, indicates that they are expressed in conserved domains on the prospective notum. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera, and that many differences are likely to be due to changes in cis-regulatory sequences of scute. In contrast, in Anopheles gambiae, a basal species with no stereotyped bristle pattern, the expression patterns of pannier and wingless are not conserved, and expression of AgASH, the Anopheles proneural gene, does not correlate in a similar manner with the bristle pattern. We discuss the possibility that independently acting cis-regulatory sequences at the scute locus may have arisen in the lineage giving rise to cyclorraphous flies.  相似文献   

12.
Scutoid is a classical dominant gain-of-function mutation of Drosophila, causing a loss of bristles and roughening of the compound eye. Previous genetic and molecular analyses have shown that Scutoid is associated with a chromosomal transposition resulting in a fusion of no-oceli and snail genes. How this gene fusion event leads to the defects in neurogenesis was not known until now. Here have found that snail is ectopically expressed in the eye-antennal and wing imaginal discs in Scutoid larvae, and that this expression is reduced in Scutoid revertants. We have also shown that the expressivity of Scutoid is enhanced by zeste mutations. snail and escargot encode evolutionarily conserved zinc-finger proteins involved in the development of mesoderm and limbs. Snail and Escargot proteins share a common target DNA sequence with the basic helix-loop-helix (bHLH) type proneural gene products. When expressed in the developing external sense organ precursors of the thorax and the eye, these proteins cause a loss of mechanosensory bristles in the thorax and perturbed the development of the compound eye. Such phenotypes resemble those associated with Scutoid. Furthermore, the effect of ectopic Escargot on bristle development is antagonized by coexpression of the bHLH gene asense. Thus, our results suggest that the Scutoid phenotype is due to an ectopic snail expression under the control of no-oceli enhancer, antagonizing neurogenesis through its inhibitory interaction with bHLH proteins. Received: 8 February 1999 / Accepted: 24 May 1999  相似文献   

13.
14.
15.
Lai EC 《Genetics》2003,163(4):1413-1425
Tufted is a classical Drosophila mutant characterized by a large number of ectopic mechanosensory bristles on the dorsal mesothorax. Unlike other ectopic bristle mutants, Tufted is epistatic to achaete and scute, the proneural genes that normally control the development of these sensory organs. In this report, I present genetic and molecular evidence that Tufted is a gain-of-function allele of the proneural gene amos that ectopically activates mechanosensory neurogenesis. I also systematically examine the ability of the various proneural bHLH proteins to cross-activate each other and find that their ability to do so is in general relatively limited, despite their common ability to induce the formation of mechanosensory bristles. This phenomenon seems instead to be related to their shared ability to activate Asense and Senseless.  相似文献   

16.
The Tufted(1) (Tft(1)) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft(1) corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which results in supernumerary neurons of the PNS, and in the notum region of the third instar imaginal wing, which gives rise to the mesothoracic extra bristles. Revertants of Tft(1), which lack ectopic neurons and bristles, do not show ectopic expression of amos. One revertant is a loss-of-function allele of amos and has a recessive phenotype in the embryonic PNS. Our results suggest that both normal and ectopic Tft(1) bristles are generated following similar rules, and both are subjected to Notch-mediated lateral inhibition. The ability of Tft(1) bristles to appear close together may be due to amos having a stronger proneural capacity than that of other proneural genes like asense and scute. This ability might be related to the wild-type function of amos in promoting development of large clusters of closely spaced olfactory sensilla.  相似文献   

17.
We examine the effect of mutations in theextramacrochaetae (emc) gene on the positioning of macrochaetes on the notum ofDrosophila. We show that, inemc mutants, most of the precursor cells appear earlier than in wild-type individuals, consistent with an antagonizing effect ofemc on the action of the proneural genesachaete andscute. We also show that reducingemc function affects the position of three bristles and/or of their precursors, but has no marked effect on the positioning of the other bristles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号