首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endotherms allocate large amounts of energy and water to the regulation of a precise body temperature (Tb), but can potentially reduce thermoregulatory costs by allowing Tb to deviate from normothermic levels. Many data on heterothermy at low air temperatures (Ta) exist for caprimulgids, whereas data on thermoregulation at high Ta are largely absent, despite members of this taxon frequently roosting and nesting in sites exposed to high operative temperatures. We investigated thermoregulation in free‐ranging rufous‐cheeked nightjars Caprimulgus rufigena and freckled nightjars Caprimulgus tristigma in the southern African arid zone. Individuals of both species showed labile Tb fluctuating around a single modal Tb (Tb‐mod). Average Tb‐mod was 39.7°C for rufous‐cheeked nightjars and 39.0°C for freckled nightjars. In both species, diurnal Tb increased with increasing Ta. At Ta ≥ 38°C, rufous‐cheeked nightjar mean Tb increased to 42°C, equivalent to 2.3°C above Tb‐mod. Under similar conditions, freckled nightjar Tb was on average only 1.1°C above Tb‐mod, with a mean Tb of 40.0°C. Freckled nightjars are one of the most heterothermic caprimulgids investigated to date, but our data suggest that during hot conditions this species maintains Tb within a narrow range above Tb‐mod, possibly reflecting an evolutionary tradeoff between decreased thermal sensitivity to lower Tb but increased sensitivity to high Tb. These findings reveal how general thermoregulatory patterns at similar Ta can vary even among closely related species.  相似文献   

2.
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10–60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10–20 m depth (136.2 ± 112.5 mg Chl a m−2, 261.7 ± 455.9 mg Phaeo m−2), intermediate at 20–30 m (55.6 ± 39.5 mg Chl a m−2, 108.8 ± 73.0 mg Phaeo m−2) and lower ones at 40–60 m (22.7 ± 23.7 mg Chl a m−2, 58.3 ± 38.9 mg Phaeo m−2). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 ± 3.2 (10–20 m) to 0.7 ± 1.0 (40–60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.  相似文献   

3.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

4.
Djungarian hamsters (Phodopus sungorus) tolerate short-term exposure to ambient temperatures (T as) down to −70°C, but surprisingly, previously appeared to reach maximum sustainable metabolic rate (SusMR) when kept at T as as high as ≥−2°C. We hypothesized that SusMR in Djungarian hamsters may be affected by the degree of prior cold acclimation and temporal patterns of T a changes experienced by the animals, as average T a declines. After cold-acclimation at +5°C for 6 weeks, hamsters reached rates of SusMR that were 35% higher than previously determined and were able to maintain positive energy balances down to T a −9°C. SusMR was unaffected, however, by whether mean cold load was constant or caused by T as cycling between +3°C and as low as −25°C, at hourly intervals. At mean T as between +3 and −3°C hamsters significantly reduced body mass and energy expenditure, but were able to maintain stable body mass at lower T as (−5 to −9°C). These results indicate that prior cold-acclimation profoundly affects SusMR in hamsters and that body mass regulation may play an integral part in maintaining positive energy balance during cold exposure. Because the degree of instantaneous cold load had no effect on SusMR, we hypothesize that limits to energy turnover in Djungarian hamsters are not determined by the capacity to withstand extreme temperatures (i.e., peripheral limits) but are due to central limitation of energy intake.  相似文献   

5.
In order to gain insight into the effect of watershed conditions on fluctuations in stream water temperature, we statistically analyzed water temperature data for 1 year, using root mean square (Rms) and harmonic (A Amplitude, φ delay time) methods. The average values of delay time (days) between air and water temperatures (T a and T w) of small (< 0.5 ha), medium (0.5–100 ha) and large (> 100 ha) watersheds were 4.53 ± 0.82 days, 11.83 ± 3.88 days and 4.45 ± 1.52 days, respectively. Fluctuations in stream water temperature expressed by Rms (Rms T w/Rms T a) and harmonic methods (A −T w/A −T a) in the medium-sized watersheds with moderate slope gradients were 0.37 ± 0.09 and 0.56 ± 0.14, respectively. These values increased in the larger watersheds with low slope gradients, including five large rivers covered by various landscapes, with their averages of 0.53 ± 0.09 and 0.78 ± 0.09, respectively, indicating the influences of solar radiation and heat transfer processes. In the smaller watersheds with high slope gradients, these values were 0.73 ± 0.02 and 0.87 ± 0.03, respectively, suggesting that shorter passage time affected water temperatures. With respect to forest type, these values at badly managed hinoki forest watersheds (0.45 ± 0.04 and 0.73 ± 0.07) were larger than those at broadleaf forest (0.34 ± 0.04 and 0.51 ± 0.12) and well-managed hinoki forest (0.33 ± 0.04 and 0.51 ± 0.07) watersheds, indicating different proportions of flow paths.  相似文献   

6.
Panting is a mechanism that increases respiratory evaporative heat loss (REHL) under heat load. Because REHL uses body water, it is physiologically and ecologically relevant to know under what conditions free-ranging animals use panting. We investigated whether the cranial arterio-venous temperature difference could provide information about REHL. We exposed sheep to environments varying in ambient dry bulb temperatures (Env 1: ~15°C, Env 2: ~25°C, Env 3: ~40°C, Env 4: ~40°C + infrared radiation) and measured REHL simultaneously with carotid arterial (T car) and jugular venous (T jug) blood temperatures, as well as brain (T brain) and rectal (T rec) temperatures. REHL increased significantly with ambient temperature, from 18.4 ± 4.5 W at Env 1 to 79.5 ± 12.6 W at Env 4 (P < 10−6). While there was no effect of environment on T car (P = 0.7) or T jug (P = 0.09), the difference between them (T a-v = T car − T jug) increased from Env 1 to Env 2 (P = 0.04) and from Env 3 to Env 4 (P = 0.008). T a-v reached a maximum of 0.7 ± 0.2°C at Env 4 and was positively correlated with REHL across environments (r 2 = 0.78, F = 34.7, P < 10−3). Calculated cranial blood flow changed only from Env 2 to Env 3 (P = 0.002). The increase in REHL maintained homeothermy when dry heat loss decreased. While REHL could increase without generating an increase in T a-v, any increase in T a-v was always associated with an increase in REHL. We conclude that the cranial T a-v provides useful information about REHL in panting animals.  相似文献   

7.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

8.
This article reports rate constants for thiol–thioester exchange (k ex), and for acid-mediated (k a), base-mediated (k b), and pH-independent (k w) hydrolysis of S-methyl thioacetate and S-phenyl 5-dimethylamino-5-oxo-thiopentanoate—model alkyl and aryl thioalkanoates, respectively—in water. Reactions such as thiol–thioester exchange or aminolysis could have generated molecular complexity on early Earth, but for thioesters to have played important roles in the origin of life, constructive reactions would have needed to compete effectively with hydrolysis under prebiotic conditions. Knowledge of the kinetics of competition between exchange and hydrolysis is also useful in the optimization of systems where exchange is used in applications such as self-assembly or reversible binding. For the alkyl thioester S-methyl thioacetate, which has been synthesized in simulated prebiotic hydrothermal vents, k a = 1.5 × 10−5 M−1 s−1, k b = 1.6 × 10−1 M−1 s−1, and k w = 3.6 × 10−8 s−1. At pH 7 and 23°C, the half-life for hydrolysis is 155 days. The second-order rate constant for thiol–thioester exchange between S-methyl thioacetate and 2-sulfonatoethanethiolate is k ex = 1.7 M−1 s−1. At pH 7 and 23°C, with [R″S(H)] = 1 mM, the half-life of the exchange reaction is 38 h. These results confirm that conditions (pH, temperature, pK a of the thiol) exist where prebiotically relevant thioesters can survive hydrolysis in water for long periods of time and rates of thiol–thioester exchange exceed those of hydrolysis by several orders of magnitude.  相似文献   

9.
In a lowland drinking water catchment area, nitrate leaching as well as groundwater recharge (GWR) was investigated in willow and poplar short rotation coppice (SRC) plantations of different ages, soil preparation measures prior to planting and harvesting intervals. Significantly increased nitrate concentrations of 16.6 ± 1.6 mg NO3-N L−1 were measured in winter/spring 2010 on a poplar site, established in 2009 after deep plowing (90 cm) but then, subsequently decreased strongly to below 2 mg NO3-N L−1 in spring 2011. The fallow ground reference plot showed nitrate concentrations consistently below 1 mg L−1 and estimated annual seepage output loss was only 1.36 ± 1.1 kg ha−1 a−1. Leaching loss from a neighboring willow plot from 2005 was 14.3 ± 6.6 kg NO3-N ha−1 during spring 2010 but decreased to 2.0 ± 1.5 kg NO3-N ha−1 during the subsequent drainage period. A second willow plot, not harvested since its establishment in 1994, showed continuously higher nitrate concentrations (10.2 ± 1.7 NO3-N L−1), while a neighboring poplar plot, twice harvested since 1994 showed significantly reduced nitrate concentrations. Water balance simulations, referenced by soil water tension and throughfall measurements, showed that at 655 mm annual rainfall, GWR from the reference plot (300 mm a−1) was reduced by 40 % (to 180 mm a−1) on the 2005 willow stand, mainly due to doubled rainfall interception losses. However, transpiration was limited by low soil water storage capacities, which in turn led to a moderate impact on GWR. We conclude that well-managed SRC on sensitive areas can prevent nitrate leaching, while impacts on GWR may be mitigated by management options.  相似文献   

10.
H.D. Jackson  R. Slotow 《Ostrich》2013,84(3-4):147-161
Afrotropical nightjars have evolved a number of adaptations that enable them to cope well with various natural mortality factors facing them. They are, however, extremely vulnerable to the many human factors that affect their lives. Three areas of human activity are of major concern: road traffic, habitat destruction and food gathering. Suitable legislation, with strict enforcement, should ensure that nightjar populations are not harvested excessively for the table. The many National Parks, Game Reserves and other protected areas throughout the Afrotropics should ensure that sufficient breeding and feeding habitats are available for the various nightjar species. There does not appear to be a solution to the road traffic problem, so road kills will almost certainly be the major mortality factor affecting most adult nightjars. A subjective assessment was made of the road mortality suffered by each species. The forest species (Brown Nightjar, Veles binotatus, Bates's Nightjar, Caprimulgus batesi and Prigogine's Nightjar, C. prigoginei) appear to be unaffected. The level of road mortality was rated as very low for Swamp Nightjar, C. natalensis, Nechisar Nightjar, C. solala, Golden Nightjar, C. eximius and Egyptian Nightjar, C. aetfvptius; as low for Montane Nightjar, C. poliocephalus, Slender-tailed Nightjar, C. clarus, Star-spotted Nightjar, C. stellatush and Red-necked Nightjar, C. ruficollis; as moderate for Fiery-necked (Pectoral) Nightjar, C. pectoralis, Donaldson-Smith's Nightjar, C. donaldsoni, Dark Nightjar, C. fraenatus and Nubian Nightjar, C. nubicus; as high for Freckled Nightjar, C. tristigma, Rufous-cheeked Nightjar, C. rufigena, Plain Nightjar, C. inornatus and Standard-winged Nightjar, Macrodipteryx longipennis; and as very high for Long-tailed Nightjar, C. climacurus, Square-tailed Nightjar, C. fossii, European Nightjar, C. europaeus and Pennant-winged Nightjar, Semeiophorus vexillarius. Throughout the Afrotropical Region nightjars die on the roads in great numbers and for some species the road toll is a major mortality factor.  相似文献   

11.
Arctic ground squirrels overwintering in northern Alaska experience average soil temperature of −10°C. To examine energetic costs of arousing from hibernation under arctic compared to temperate conditions, captive ground squirrels were maintained in ambient temperatures (T a) of 2, −5 and −12°C. Rates of oxygen consumption and carbon dioxide production were used to estimate metabolic rate and fuel use during the three phases of arousal episodes: rewarming, euthermia, and recooling. Respiratory quotient comparisons suggest exclusive use of lipid during rewarming and mixed fuel use during euthermia. Animals rewarming from torpor at T a −12°C took longer, consumed more oxygen, and attained higher peak rates of oxygen consumption when compared to 2°C. T a had no significant effect on cost or duration of the euthermic phase. Animals recooled faster at −12°C than at 2°C, but total oxygen consumption was not different. T a had no significant effect on the total cost of arousal episodes when all three phases are included. Arousal episodes account for 86% of estimated costs of a complete hibernation cycle including torpor when at 2°C and only 23% at −12°C. Thus, due to the higher costs of steady-state metabolism during torpor, proportional metabolic costs of arousal episodes at T a characteristic of the Arctic are diminished compared to relative costs of arousals in more temperate conditions.  相似文献   

12.
In eutherian mammals, uncoupling protein 1 (UCP1) mediated non-shivering thermogenesis from brown adipose tissue (BAT) provides a mechanism through which arousal from torpor and hibernation is facilitated. In order to directly assess the magnitude by which the presence or absence of UCP1 affects torpor patterns, rewarming and arousal rates within one species we compared fasting induced torpor in wildtype (UCP1+/+) and UCP1-ablated mice (UCP−/−). Torpor was induced by depriving mice of food for up to 48 h and by a reduction of ambient temperature (T a) from 30 to 18°C at four different time points after 18, 24, 30 and 36 h of food deprivation. In most cases, torpor bouts occurred within 20 min after the switch in ambient temperature (30–18°C). Torpor bouts expressed during the light phase lasted 3–6 h while significantly longer bouts (up to 16 h) were observed when mice entered torpor during the dark phase. The degree of hypometabolism (5–22 ml h−1) and hypothermia (19.5–26.7°C) was comparable in wildtype and UCP1-ablated mice, and both genotypes were able to regain normothermia. In contrast to wildtype mice, UCP1-ablated mice did not display multiple torpor bouts per day and their peak rewarming rates from torpor were reduced by 50% (UCP1+/+: 0.24 ± 0.08°C min−1; UCP1−/−: 0.12 ± 0.04°C min−1). UCP1-ablated mice therefore took significantly longer to rewarm from 25 to 32°C (39 vs. 70 min) and required 60% more energy for this process. Our results demonstrate the energetic benefit of functional BAT for rapid arousal from torpor. They also suggest that torpor entry and maintenance may be dependent on endogenous rhythms.  相似文献   

13.
Little is known about torpor in the tropics or torpor in megachiropteran species. We investigated thermoregulation, energetics and patterns of torpor in the northern blossom-bat Macroglossus minimus (16 g) to test whether physiological variables may explain why its range is limited to tropical regions. Normothermic bats showed a large variation in body temperature (T b) (33 to 37 °C) over a wide range of ambient temperatures (T as) and a relatively low basal metabolic rate (1.29 ml O2 g−1 h−1). Bats entered torpor frequently in the laboratory at T as between 14 and 25 °C. Entry into torpor always occurred when lights were switched on in the morning, independent of T a. MRs during torpor were reduced to about 20–40% of normothermic bats and T bs were regulated at a minimum of 23.1 ± 1.4 °C. The duration of torpor bouts increased with decreasing T a in non-thermoregulating bats, but generally terminated after 8 h in thermoregulating torpid bats. Both the mean minimum T b and MR of torpid M. minimus were higher than that predicted for a 16-g daily heterotherm and the T b was also about 5 °C higher than that of the common blossom-bat Syconycteris australis, which has a more subtropical distribution. These observations suggest that variables associated with torpor are affected by T a and that the restriction to tropical areas in M. minimus to some extent may be due to their ability to enter only very shallow daily torpor. Accepted: 22 September 1997  相似文献   

14.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

15.
Groups of juvenile tench (7.02 ± 0.28 g) were reared under four different light regimes; blue light, red light (80 Wm−2 12L:12D photoperiod) white light (912 ± 210 lux, 80 Wm−2, 12L:12D photoperiod) and no light (0 lux) (0L:24D). Visibility of fish out of shelters was used as an indicator of activity and was monitored by video recording. Blood plasma cortisol concentrations were also measured. Fish under blue or white light were significantly less active during the photophase than those under red or no light (P < 0.01). Red light produced similar activity patterns to fish receiving 24 h darkness. Plasma cortisol concentrations were also significantly influenced (P < 0.05) with the fish under white light having the highest plasma cortisol concentration (317 ± 62 ng cm−3) compared to fish in the dark treatment (106 ± 36 ng cm−3). Thus, the provision of coloured light filters increases activity in juvenile tench and may reduce their intrinsic stress level.  相似文献   

16.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

17.
Summary Hosta ‘Blue Vision’, a shade-adapted perennial, was successfully acclimatized in high, natural light conditions in the research AcclimatronTM at Clemson University, Clemson, SC during the summer of 2000. The supplemental CO2 levels achieved during acclimatization were 710±113, 2396±121, and 5641±119 μmol mol−1, approximately 2×, 6×, and 15× ambient CO2. Plants were maintained in H2O-saturated atmospheres and protected from temperature increases associated with high light intensity. In the 5 wk following ex vitro transfer, plantlet roots grew at the 2× CO2 level, but shoot biomass was unaffected. Results for the 6× and 15× CO2 levels were comparable and provided the best plantlet growth. The “doubling time’ that is characteristic of exponential growth was 10.8 and 9.8 d for root and shoot dry weights, respectively. There was no indication of light saturation of net photosynthetic rate (NPR) over the photosynthetic photon flux density (PPFD) range of 100–1200 μmolm−2s−1 experienced during this study. An interaction between CO2 and light intensity levels was detected for NPR of Hosta ‘Blue Vision’ with CO2 saturation occurring at approximately 2800 μmol mol−1. regardless of light level. Furthermore, at the optimal CO2 level, NPR increased quadratically as light intensity increased, and NPR was greatest at the maximum light intensity (PPFD: 1200 μmol m−2s−1).  相似文献   

18.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

19.
In an experimental site for reforestation of degraded area, three-year-old plants of Bertholletia excelsa Humb. & Bonpl. were subjected to different fertilization treatments: T0 = unfertilized control, T1 = green fertilization (branches and leaves) and T2 = chemical fertilization. Higher net photosynthetic rates (P N) were observed in T1 [13.2±1.0 μmol(CO2) m−2 s−1] compared to T2 [8.0±1.8 μmol(CO2) m−2 s−1] and T0 [4.8±1.3 μmol(CO2) m−2 s−1]. Stomatal conductance (g s), transpiration rate (E) and water use efficiency (WUE) of individuals of T1 and T2 did not differ significantly, however, they were by 88, 55 and 63%, respectively, higher in T1 than in the control. The mean values of variable fluorescence (Fv), performance index (P.I.) and total chlorophyll [Chl (a+b)] were higher in T1. Our results indicate that green fertilization improves photosynthetic structure and function in plants of B. excelsa in young phase.  相似文献   

20.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号