首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 941 毫秒
1.
Behavioral comparisons between endangered species and their congeners may provide valuable data with which to test ideas about declining populations or the future direction of recovery efforts. We considered the case of the highly endangered Vancouver Island marmot ( Marmota vancouverensis ). Predation is a current source of mortality, and inadequate anti-predator behavior could have profound ramifications for the future success of re-introductions. We tested whether M. vancouverensis anti-predator behavior was unusual or 'deficient' by quantifying it and comparing it to 13 other marmot species. We found no evidence that Vancouver Island marmots were unwary. If anything, the converse was true. Vancouver Island marmots were responsive and vigilant towards real and simulated predatory threats. They dug numerous escape burrows that reduced the likelihood of predation. Our results have several implications for future recovery efforts, one of which was to establish 'baseline' flight-response targets that captive-bred Vancouver Island marmots will have to meet or exceed prior to release into predator-rich environments.  相似文献   

2.
Drosophila montana, a species of the Drosophila virilis group, has distributed around the northern hemisphere. Phylogeographic analyses of two North American and one Eurasian population of this species offer a good background for the studies on the extent of variation in phenotypic traits between populations as well as for tracing the selection pressures likely to play a role in character divergence. In the present paper, we studied variation in the male courtship song, wing and genital characters among flies from Colorado (USA), Vancouver (Canada) and Oulanka (Finland) populations. The phenotypic divergence among populations did not coincide with the extent of their genetic divergence, suggesting that the characters are not evolving neutrally. Divergence in phenotypic traits was especially high between the Colorado and Vancouver populations, which are closer to each other in terms of their mtDNA genotypes than they are to the Oulanka population. The males of the Colorado population showed high divergence especially in song traits and the males of the Vancouver population in wing characters. Among the male song traits, two characters known to be under sexual selection and a trait important in species recognition differed clearly between populations, implying a history of directional and/or diversifying rather than balancing selection. The population divergence in wing characters is likely to have been enhanced by natural selection associated with environmental factors, whereas the male genitalia traits may have been influenced by sexual selection and/or sexual conflict.  相似文献   

3.
Phenotypic differentiation can occur between the native and introduced ranges of a species as a result of novel selective pressures, or by neutral processes and historical events. Our aim was to determine how underlying patterns of genetic diversity and potential population origin might have contributed to phenotypic differentiation between the native and introduced ranges of an herbaceous weed. We combined data from microsatellite markers from 16 native and 16 introduced populations of Cynoglossum officinale, a noxious weed of the western US, with previously published phenotypic data from common gardens to investigate genetic diversity in both ranges and relate population structure to phenotypic differentiation. Several lines of evidence suggest loss of genetic diversity during the introduction of C. officinale. Despite reduced diversity, introduced plants out-performed natives in a common garden in one environment. We found little evidence that population-level variation in diversity contributed to phenotypic variation (e.g. through inbreeding depression). Our results suggest that establishment, spread, and potentially adaptation of a species to a new range is not prevented by reductions in genetic diversity of the magnitude we observed. Further, we suggest that non-random filtering or biased introduction at the point of emigration may contribute to phenotypic divergence between ranges.  相似文献   

4.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

5.
Adaptation to ecologically distinct environments can coincide with the emergence of reproductive barriers. The outcome of this process is highly variable and can range along a continuum from weak population differentiation all the way to complete, genome-wide divergence. The factors determining how far diverging taxa will move along this continuum remain poorly understood but are most profitably investigated in taxa under replicate divergence. Here, we explore determinants of progress towards speciation by comparing phenotypic and molecular divergence within young (<150 years) lake-stream stickleback pairs from Central Europe to divergence in older (thousands of years) archetypal lake-stream pairs from Vancouver Island, Canada. We generally find relatively weak divergence in most aspects of foraging morphology (gill raker number, body shape) in the European pairs, although substantial adaptive divergence is seen in gill raker length. Combined with striking overall phenotypic differences between the continents, this argues for genetic and time constraints on adaptive divergence in the European pairs. The European lake-stream pairs also do not display the strong habitat-related differentiation in neutral (microsatellite) markers seen in the Canadian watersheds. This indicates either the lack of strong reproductive barriers owing to weak adaptive divergence, or alternatively that neutral markers are poorly suited for detecting reproductive barriers if these emerge rapidly. Overall, our comparative approach suggests constraints on speciation due to genetic architecture and limited time for divergence. The relative importance of these factors remains to be quantified by future investigation.  相似文献   

6.
Marmots are of great interest for both sociobiologists studying the evolution of mammal societies and conservationists trying to protect them from extinction. In contrast, their phylogeny and morphological evolution are poorly understood and studied. Recently, a phylogenetic analysis using cytochrome b provided the first reconstruction of marmot evolutionary history and suggested that a high level of sociality evolved at least twice independently in the two proposed marmot subgenera. A morphological analysis of the marmot mandible supported this subgeneric classification and showed interesting, and unexpected, patterns in the evolution of marmot skeletal characters. In the present study we investigated a more complex, and potentially informative structure, the ventral cranium. Geometric morphometric techniques were applied in the first analysis of cranial morphology including all marmot species. Three main phenetic groups were found, which reflect phylogeny (subgenus Petromarmota , and Palaearctic subgenus Marmota ) or geographical distribution (Palaearctic vs. Nearctic subgenus Marmota ). Convergence in skeletal characters due to size similarities, a common finding in the sciurid skeleton according to traditional morphological analyses, did not occur in the marmot ventral cranium. Despite a genetic distance between Marmota vancouverensis and Marmota caligata similar to that among different populations of the latter species, the Vancouver Island marmot had the most atypical ventral cranium in the subgenus Petromarmota . This finding confirmed results obtained with the mandible, and emphasized the uniqueness of M. vancouverensis and the usefulness of complementing molecular analyses with morphological studies for a thorough characterization of population divergence, and a careful planning of conservation strategies.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 385–407  相似文献   

7.
E Luquet  J-P Léna  C Miaud  S Plénet 《Heredity》2015,114(1):69-79
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs–FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.  相似文献   

8.
Understanding the effects of the demographic dynamics and environmental heterogeneity on the genomic variation of forest species is important, not only for uncovering the evolutionary history of the species, but also for predicting their ability to adapt to climate change. In this study, we combined a common garden experiment with range-wide population genomics analyses to infer the demographic history and characterize patterns of local adaptation in a subtropical oak species, Quercus acutissima (Carruthers). We scanned approximately 8% of the oak genome using a balanced representation of both genic and non-genic regions and identified a total of 55 361 single nucleotide polymorphisms (SNPs) in 167 trees. Genomic diversity analyses revealed an east–west split in the species distribution range. Coalescent-based model simulations inferred a late Pleistocene divergence in Q. acutissima between the east and west groups as well as subsequent preglaciation population expansion events. Consistent with observed genetic differentiation, morphological traits also showed east–west differentiation and the biomass allocation in seedlings was significantly associated with precipitation. Environment was found to have a significant and stronger impact on the non-neutral than the neutral SNPs, and also significantly associated with the phenotypic differentiation, suggesting that, apart from the geography, environment had played a role in determining non-neutral and phenotypic variation. Our approach, which combined a common garden experiment with landscape genomics data, validated the hypothesis of local adaptation of this long-lived oak tree of subtropical China. Our study joins the small number of studies that have combined genotypic and phenotypic data to detect patterns of local adaptation.  相似文献   

9.
Genetic differentiation can be highly variable across the genome. For example, loci under divergent selection and those tightly linked to them may exhibit elevated differentiation compared to neutral regions. These represent "outlier loci" whose differentiation exceeds neutral expectations. Adaptive divergence can also increase genome-wide differentiation by promoting general barriers to neutral gene flow, thereby facilitating genomic divergence via genetic drift. This latter process can yield a positive correlation between adaptive phenotypic divergence and neutral genetic differentiation (described here as "isolation-by-adaptation"). Here, we examine both these processes by combining an AFLP genome scan of two host plant ecotypes of Timema cristinae walking-sticks with existing data on adaptive phenotypic divergence and ecological speciation in these insects. We found that about 8% of loci are outliers in multiple population comparisons. Replicated comparisons between population-pairs using the same versus different host species revealed that 1-2% of loci are subject to host-related selection specifically. Locus-specific analyses revealed that up to 10% of putatively neutral (nonoutlier) AFLP loci exhibit significant isolation-by-adaptation. Our results suggest that selection may affect differentiation directly, via linkage, or by facilitating genetic drift. They thus illustrate the varied and sometimes nonintuitive contributions of selection to heterogeneous genomic differentiation.  相似文献   

10.
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.  相似文献   

11.
12.
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.  相似文献   

13.
The study of the neutral and/or selective processes driving genetic variation in natural populations is central to determine the evolutionary history of species and lineages and understand how they interact with different historical and contemporary components of landscape heterogeneity. Here, we combine nuclear and mitochondrial data to study the processes shaping genetic divergence in the Mediterranean esparto grasshopper (Ramburiella hispanica). Our analyses revealed the presence of three main lineages, two in Europe that split in the Early-Middle Pleistocene and one in North Africa that diverged from the two European ones after the Messinian. Lineage-specific potential distribution models and tests of environmental niche differentiation suggest that the phylogeographic structure of the species was driven by allopatric divergence due to the re-opening of the Gibraltar strait at the end of the Messinian (Europe–Africa split) and population fragmentation in geographically isolated Pleistocene climatic refugia (European split). Although we found no evidence for environment as an important driver of genetic divergence at the onset of lineage formation, our analyses considering the spatial distribution of populations and different aspects of landscape composition suggest that genetic differentiation at mitochondrial loci was largely explained by environmental dissimilarity, whereas resistance-based estimates of geographical distance were the only predictors of genetic differentiation at nuclear markers. Overall, our study shows that although historical factors have largely shaped concordant range-wide patterns of mitonuclear genetic structure in the esparto grasshopper, different contemporary processes (neutral gene flow vs. environmental-based selection) seem to be governing the spatial distribution of genetic variation in the two genomes.  相似文献   

14.
To understand the biology of organisms it is important to take into account the evolutionary forces that have acted on their constituent populations. Neutral genetic variation is often assumed to reflect variation in quantitative traits under selection, though with even low neutral divergence there can be substantial differentiation in quantitative genetic variation associated with locally adapted phenotypes. To study the relative roles of natural selection and genetic drift in shaping phenotypic variation, the levels of quantitative divergence based on phenotypes (PST) and neutral genetic divergence (FST) can be compared. Such a comparison was made between 10 populations of Finnish House Sparrows (= 238 individuals) collected in 2009 across the whole country. Phenotypic variation in tarsus‐length, wing‐length, bill‐depth, bill‐length and body mass were considered and 13 polymorphic microsatellite loci were analysed to quantify neutral genetic variation. Calculations of PST were based on Markov‐Chain Monte Carlo Bayesian estimates of phenotypic variances across and within populations. The robustness of the conclusions of the PSTFST comparison was evaluated by varying the proportion of variation due to additive genetic effects within and across populations. Our results suggest that body mass is under directional selection, whereas the divergence in other traits does not differ from neutral expectations. These findings suggest candidate traits for considering gene‐based studies of local adaptation. The recognition of locally adapted populations may be of value in the conservation of this declining species.  相似文献   

15.
Geographic isolation is considered essential to most speciation events, but our understanding of what controls the pace and degree of phenotypic divergence among allopatric populations remains poor. Why do some taxa exhibit phenotypic differentiation across barriers to dispersal, whereas others do not? To test factors controlling phenotypic divergence in allopatry, we employed a comparative phylogeographic approach consisting of replicates of ecologically similar Andean bird species isolated across a major biogeographic barrier, the Marañon Valley of Peru. Our study design leverages variation among codistributed taxa in their degree of plumage, morphometric, and vocal differentiation across the Marañon to examine the tempo of phenotypic evolution. We found that substantial plumage differences between populations required roughly two million years to evolve. In contrast, morphometric trait evolution showed greater idiosyncrasy and stasis. Our results demonstrate that despite a large degree of idiosyncrasy in the relationship between genetic and phenotypic divergence across taxa and environments, comparative studies within regions may reveal predictability in the pace of phenotypic divergence. Our results also suggest that social selection is important for driving differentiation of populations found in similar environments.  相似文献   

16.
Adaptive divergence in coloration is expected to produce reproductive isolation in species that use colourful signals in mate choice and species recognition. Indeed, many adaptive radiations are characterized by differentiation in colourful signals, suggesting that divergent selection acting on coloration may be an important component of speciation. Populations in the Anolis marmoratus species complex from the Caribbean island of Guadeloupe display striking divergence in the colour and pattern of adult males that occurs over small geographic distances, suggesting strong divergent selection. Here we test the hypothesis that divergence in coloration results in reduced gene flow among populations. We quantify variation in adult male coloration across a habitat gradient between mesic and xeric habitats, use a multilocus coalescent approach to infer historical demographic parameters of divergence, and examine gene flow and population structure using microsatellite variation. We find that colour variation evolved without geographic isolation and in the face of gene flow, consistent with strong divergent selection and that both ecological and sexual selection are implicated. However, we find no significant differentiation at microsatellite loci across populations, suggesting little reproductive isolation and high levels of contemporary gene exchange. Strong divergent selection on loci affecting coloration probably maintains clinal phenotypic variation despite high gene flow at neutral loci, supporting the notion of a porous genome in which adaptive portions of the genome remain fixed whereas neutral portions are homogenized by gene flow and recombination. We discuss the impact of these findings for studies of colour evolution and ecological speciation.  相似文献   

17.
Geographic variation in phenotypes plays a key role in fundamental evolutionary processes such as local adaptation, population differentiation and speciation, but the selective forces behind it are rarely known. We found support for the hypothesis that geographic variation in plumage traits of the pied flycatcher Ficedula hypoleuca is explained by character displacement with the collared flycatcher Ficedula albicollis in the contact zone. The plumage traits of the pied flycatcher differed strongly from the more conspicuous collared flycatcher in a sympatric area but increased in conspicuousness with increasing distance to there. Phenotypic differentiation (PST) was higher than that in neutral genetic markers (FST), and the effect of geographic distance remained when statistically controlling for neutral genetic differentiation. This suggests that a cline created by character displacement and gene flow explains phenotypic variation across the distribution of this species. The different plumage traits of the pied flycatcher are strongly to moderately correlated, indicating that they evolve non‐independently from each other. The flycatchers provide an example of plumage patterns diverging in two species that differ in several aspects of appearance. The divergence in sympatry and convergence in allopatry in these birds provide a possibility to study the evolutionary mechanisms behind the highly divergent avian plumage patterns.  相似文献   

18.
Pleistocene climate cycles and glaciations had profound impacts on taxon diversification in the Boreal Forest Biome. Using population genetic analyses with multilocus data, we examined diversification, isolation, and hybridization in two sibling species of tree squirrels (Tamiasciurus douglasii and Tamiasciurus hudsonicus) with special attention to the geographically and genetically enigmatic population of T. hudsonicus on Vancouver Island, Canada. The two species differentiated only about 500,000 years ago, in the Late Pleistocene. The island population is phylogenetically nested within T. hudsonicus according to our nuclear analysis but within T. douglasii according to mitochondrial DNA. This conflict is more likely due to historical hybridization than to incomplete lineage sorting, and it appears that bidirectional gene flow occurred between the island population and both species on the mainland. This interpretation of our genetic analyses is consistent with our bioclimatic modeling, which demonstrates that both species were able to occupy this region throughout the Late Pleistocene. The divergence of the island population 40,000 years ago suggests that tree squirrels persisted in a refugium on Vancouver Island at the last glacial maximum, 20,000 years ago. Our observations demonstrate how Pleistocene climate change and habitat shifts have created incipient divergence in the presence of gene flow.  相似文献   

19.
Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent‐based inferences about demographic processes to reconstruct the population histories of two co‐distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation.  相似文献   

20.
Substantial phenotypic and genetic variation is often found below the species level and this may be useful in quantifying biodiversity and predicting future diversification. However, relatively few studies have tested whether different aspects of intraspecific variation show congruent patterns across populations. Here, we quantify several aspects of divergence between 13 insular populations of an island endemic bird, the Vanuatu white-eye ( Zosterops flavifrons ). The components of divergence studied are mitochondrial DNA (mtDNA), nuclear DNA microsatellites and morphology. These different aspects of divergence present subtly different scenarios. For instance, an mtDNA phylogenetic tree reveals a potential cryptic species on the most southerly island in Vanuatu and considerable divergence between at least two other major phylogroups. Microsatellite loci suggest that population genetic divergence between insular populations, both between and within phylogroups, is substantial, a result that is consistent with a low level of interisland gene flow. Finally, most populations were found to be strongly morphologically divergent, but no single population was morphologically diagnosable from all others. Taken together, our results show that, although many measures of divergence are concordant in this system, the number of divergent units identified varies widely depending on the characters considered and approach used. A continuum of divergence and a degree of discordance between different characters are both to be expected under simple models of evolution, but they present problems in terms of delimiting conservation units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号