首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P450c21 catalyzes an important step in steroid synthesis. Its deficiency leads to symptoms of steroid imbalance. To obtain enough P450c21 for structure and function studies, we developed a method to express P450c21 in Escherichia coli. The 5'-region of the human P450c21 cDNA was modified to ensure efficient translation and the C terminus of the protein was extended with four His residues for easy purification. Mutant proteins with substitutions at residues 172 and 281 exhibited decreased enzymatic activities similar to those found in mammalian cells. One new mutation changing Glu-380 to Asp (D380) caused 3-fold reduction in enzymatic activity. The amount of apoprotein production detected by immunoblotting and the affinity of the mutant protein towards substrate as measured by Km were normal. The defect lies in the decreased ability of the apoprotein to bind heme, which was measured by CO difference and substrate-binding spectra. The D380 mutant protein had 3-fold reduction in peak heights in both spectra. This reduced heme binding resulted in 3-fold lower enzymatic activity.  相似文献   

2.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

3.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

4.
Suicide inactivation of hepatic cytochrome P450 (P450) enzymes 2C11, 2C6, and 3A1/A2 by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP) in intact rats results in prosthetic heme destruction, albeit by apparently distinct mechanisms. Such heme destruction is now shown to be associated with the loss of immunochemically detectable apoprotein of P450s 2C11 and 3A but with little of that of P450 2C6, in spite of their comparable DDEP-mediated functional inactivation. The loss of a approximately 50-kDa hepatic microsomal protein band along with the immunoreactive P450 3A loss strengthens the concept that such an in vivo loss indeed reflects proteolysis of the DDEP-inactivated P450. Furthermore, this propensity of DDEP-inactivated P450s 3A for proteolysis appears to correlate with the relative degree of prosthetic heme alkylation of their apoprotein rather than their functional inactivation per se. Thus, rapid degradation of apoP450s 3A was seen after DDEP treatment, which promoted extensive irreversible heme binding to apoP450s 3A, but not after exposure to allylisopropylacetamide (AIA), which inactivates these isozymes comparably, but induced minimal apoP450 3A heme alkylation. In addition, differences were observed in the relative sensitivities of proteolysis of DDEP-inactivated P450s 2C11 and 3A to hemin, which largely prevented the DDEP-induced proteolytic loss of P450 2C11 but apparently failed to prevent the loss of DDEP-inactivated P450s 3A, when coadministered with DDEP. This differential hemin sensitivity of the proteolysis of DDEP-inactivated P450 2C11, coupled with the observation that immunochemically detectable P450 2C11 loss occurs after its inactivation by both AIA and DDEP, provides compelling support for the existence of distinct proteolytic pathways for individual suicidally inactivated P450s.  相似文献   

5.
Prostaglandin H synthase apoprotein, without its prosthetic heme group, was inactivated by N-acetylimidazole under conditions typical for the O-acetylation of tyrosyl residues. A spontaneous reactivation occurred above pH 7.5 at 22 degrees C, which indicated spontaneous hydrolysis of acetylated residues. Below pH 7.5, where stable inactivation was observed, reactivation was achieved by reaction with hydroxylamine. Both enzymic activities of prostaglandin H synthase, cyclooxygenase and peroxidase, were inactivated and reactivated simultaneously and to the same extent. In contrast to the apoprotein, the holoenzyme with heme was not inactivated by N-acetylimidazole. The number of acetyl groups, as determined as hydroxamate after the reaction with hydroxylamine at pH 8.2, was 2.5 +/- 0.4 for the apoprotein and 1.0 +/- 0.24 for the holoenzyme. The specific binding of heme as the prosthetic group was no longer observed by EPR (signals at g = 6.7 and 5.3) when hemin was added to the N-acetylimidazole-reacted apoprotein. Treatment of N-acetylimidazole-reacted apoprotein with hydroxylamine restored the specific binding of heme. The N-acetylimidazole-reacted apoprotein supplemented with hemin and reacted with hydroperoxides, neither showed electronic absorption spectra of higher oxidation states nor an EPR doublet signal due to a tyrosyl radical. These results demonstrate that heme protects against the inactivating modification by N-acetylimidazole and that this modification prevents binding of the prosthetic heme group necessary for both enzymic activities. The absence of the prosthetic heme group explains the concomitant loss of cyclooxygenase and peroxidase activities, as well as the absence of higher oxidation states and the tyrosyl radical. We suggest that the acetylation of a residue in the heme pocket, most probably a tyrosine, although a histidine cannot be definitely disproved, exerts the inhibiting effects. This residue could be the axial ligand of the heme or in close contact to the heme. The results also show that the inhibition by N-acetylimidazole does not involve the acetylation of Ser530 which causes the inhibition by acetylsalicylic acid of cyclooxygenase. [The numbering of amino acids in ovine prostaglandin H synthase is according to DeWitt, D. L. and Smith, W. L. (1988) Proc. Natl Acad. Sci. USA 85, 1412-1416 including a signal peptide of 24 residues which is missing in the processed protein.  相似文献   

6.
The cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc comprises three consecutive monooxygenase reactions (22R-hydroxylation, 20S-hydroxylation, and C(20)-C(22) bond scission) that produces pregnenolone. The electron equivalents necessary for the oxygen activation are supplied from a 2Fe-2S type ferredoxin, adrenodoxin. We found that 1:1 stoichiometric binding of oxidized adrenodoxin to oxidized cytochrome P450scc complexed with cholesterol or 25-hydroxycholesterol caused shifts of the high-spin EPR signals of the heme moiety at 5 K. Such shifts were not observed for the low-spin EPR signals. Ligation of CO or NO to the reduced heme of cytochrome P450scc complexed with reduced adrenodoxin and various steroid substrates did not cause any change in the axial EPR spectrum of the reduced iron-sulfur center at 77 K. These results are in remarkable contrast to those obtained for the cytochrome P450cam-d-camphor-putidaredoxin ternary complex, suggesting that the mode of cross talk between adrenodoxin and cytochrome P450scc is very different from that in the Pseudomonas system. The difference may be primarily due to the location of the charged amino acid residues of the ferredoxins important for the interaction with the partner cytochrome P450.  相似文献   

7.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

8.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   

9.
The inactivations of P450 2B4 and the T302A mutant of 2B4 by tert-butyl acetylene (tBA) and the inactivation of 2B4 T302A by tert-butyl 1-methyl-2-propynyl ether (tBMP) have been investigated. tBA and tBMP inactivated both enzymes in a mechanism-based manner with the losses in enzymatic activity corresponding closely to losses in P450 heme. HPLC and ESI-LC-MS analysis detected two different tBA- or tBMP-modified heme products with masses of 661 and 705 Da, respectively. Interestingly, the inactivations of the P450s 2B4 by tBA and tBMP were partially reversible by dialysis, and the tBA- or tBMP-modified heme products could only be observed with ESI-LC-MS/MS when the inactivated samples were acidified prior to analysis, indicating a requirement for protons in the formation of stable heme adducts in both the wild-type and mutant 2B4 enzymes. Results of studies using artificial oxidants to support enzyme inactivation suggest that the oxenoid-iron activated oxygen species is preferentially utilized during the inactivation of the P450s 2B4 by tBA. These results argue against the use of a peroxo-iron species by P450 2B4 T302A. Molecular dynamics studies of wild-type P450 2B4 reveal that contiguous hydrogen bond networks, including structural waters, link a conserved glutamate (E301) to the distal oxygen of the peroxo-heme species via threonine 302. Interestingly, models of 2B4 T302A reveal that a compensatory, ordered hydrogen bond network forms despite the removal of T302. These results indicate that while T302 may play a role in proton delivery in the formation of the oxenoid-iron complex and in the stabilization of acetylene heme adducts in 2B4, it is not essential for proton delivery given the presence of E301 in the binding site.  相似文献   

10.
EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.  相似文献   

11.
The alcohol-inducible cytochrome P450 2E1 is a major human hepatic P450 which metabolizes a broad array of endogenous and exogenous compounds, including ethanol, low-molecular weight toxins, and fatty acids. Several substrates are known to stabilize this P450 and inhibit its cellular degradation. Furthermore, ethanol is a known modulator of P450 2E1 substrate metabolism. We examined the CO binding kinetics of P450 2E1 after laser flash photolysis of the heme-CO bond, to probe the effects of ethanol and other substrates on protein conformation and dynamics. Ethanol had an effect on the two kinetic parameters that describe CO binding: it decreased the rate of CO binding, suggesting a decrease in the protein's conformational flexibility, and increased the photosensitivity, which indicates a local effect in the active site region such as strengthening of the heme-CO bond. Other substrates decreased the CO binding rate to varying degrees. Of particular interest is the effect of arachidonic acid, which abolished photodissociation in the absence of ethanol but had no effect in the presence of ethanol. These results are consistent with a model of P450 2E1 whereby arachidonic acid binds along a long hydrophobic binding pocket and blocks exit of CO from the heme region.  相似文献   

12.
The multidomain fatty-acid hydroxylase flavocytochrome P450 BM3 has been studied as a paradigm model for eukaryotic microsomal P450 enzymes because of its homology to eukaryotic family 4 P450 enzymes and its use of a eukaryotic-like diflavin reductase redox partner. High-resolution crystal structures have led to the proposal that substrate-induced conformational changes lead to removal of water as the sixth ligand to the heme iron. Concomitant changes in the heme iron spin state and heme iron reduction potential help to trigger electron transfer from the reductase and to initiate catalysis. Surprisingly, the crystal structure of the substrate-free A264E heme domain mutant reveals the enzyme to be in the conformation observed for substrate-bound wild-type P450, but with the iron in the low-spin state. This provides strong evidence that the spin-state shift observed upon substrate binding in wild-type P450 BM3 not only is caused indirectly by structural changes in the protein, but is a direct consequence of the presence of the substrate itself, similar to what has been observed for P450cam. The crystal structure of the palmitoleate-bound A264E mutant reveals that substrate binding promotes heme ligation by Glu(264), with little other difference from the palmitoleate-bound wild-type structure observable. Despite having a protein-derived sixth heme ligand in the substrate-bound form, the A264E mutant is catalytically active, providing further indication for structural rearrangement of the active site upon reduction of the heme iron, including displacement of the glutamate ligand to allow binding of dioxygen.  相似文献   

13.
tert-Butyl 1-methyl-2-propynyl ether (tBMP) was analyzed for its ability to act as a mechanism-based inactivator of p450 2B4. tBMP inactivated p450 2B4 in a time-, concentration-, and NADPH-dependent manner. Losses in activity occurred with concurrent losses in the reduced CO spectrum and native p450 heme; however, there was a greater loss in activity than could be accounted for by reduced CO spectra or native heme loss. LC/MS analysis demonstrated that the losses in native heme were accompanied by the appearance of two modified hemes with m/z values of 705Da, consistent with tBMP adducted hemes. Both adducts had identical fragmentation patterns when analyzed by LC/MS/MS. The spectra were consistent with a tBMP molecule and an oxygen atom attached to iron-depleted heme. Proton NMR studies suggest that the two modified hemes in p450 2B1 are N-alkylated on pyrrole rings A and D.  相似文献   

14.
Xanthates have previously been shown to inactivate the phenobarbital-inducible rat cytochrome P450 2B1 as well as its human homologue P450 2B6. The inactivation was mechanism-based and the loss in enzymatic activity was due to covalent binding of a reactive xanthate intermediate to the P450 2B1 apoprotein. In this report, we investigated various mechanistic events to elucidate the individual step(s) in the P450 catalytic cycle that are compromised due to the inactivation by xanthates. Different xanthates displayed typical type I binding spectra and the spectral binding constants were in the low-millimolar range. A dramatic loss in 7-ethoxy-4-(trifluoromethyl)coumarin activity was observed when P450 2B1 was incubated with five different xanthates in the presence of NADPH. With the exception of the C14 xanthate, virtually no loss of absorbance at 418 or 450 nm in the reduced-CO complex was observed. Long-chain xanthates were able to affect the rate of the first electron transfer in the P450 catalytic cycle by stabilizing the heme in its low-spin state. n-Octyl xanthate (C8) metabolism led to very little observable oxy-ferro intermediate complex formation. The alternate oxidant tert-butyl hydroperoxide was able to support the inactivation reaction of C8 in the absence of reductase or NADPH. The rates of reduction of native, C8-exposed, and C8-inactivated P450 2B1 were measured. The C8-inactivated P450 had a 62% lower rate of reduction in the absence or presence of benzphetamine compared to the native enzyme. Product formation of the three enzyme preparations was quantified with benzphetamine as the substrate. The C8-inactivated P450 2B1 exhibited a much lower rate of NADPH consumption and formation of formaldehyde. However, the ratio of H2O2 to formaldehyde production increased from 1:1 for the native enzyme to 2.8:1 for the inactivated P450. Together these observations indicate that the covalent modification of P450 2B1 by a reactive intermediate of xanthates reduces the rate of the first electron transfer by the reductase and also leads to uncoupling of electron transfer from product formation by diverting a greater proportion of the electrons to H2O2 formation.  相似文献   

15.
1,3-Butadiene is metabolized mainly by cytochrome P450 2E1 to several epoxides that are considered toxic and carcinogenic. The first step of BD metabolism is oxidation to 1,2-epoxy-3-butene (EB), a reactive metabolite. It has been shown that P450s can be inactivated by covalent binding of reactive metabolites to protein or heme. Molecular dosimetry studies have clearly shown that BD metabolism follows a supralinear dose response, suggestive of saturation of metabolic activation. In this study, potential binding sites of EB in human P450 2E1 were identified and modeled to test whether EB covalently binds to residues important for enzyme activity. Commercially available human P450 2E1 was reacted with EB, digested with trypsin and the resulting peptides were analyzed by Matrix-Assisted Laser Desorption/Ionization tandem Time-of-Flight mass spectrometry (MALDI-MS). The identity of EB modified peptides was confirmed by Matrix-Assisted Laser Desorption/Ionization tandem mass spectrometry (MALDI-MS/MS) sequencing. It was shown that EB binds to four histidine and two tyrosine residues. All modification sites were assigned by at least two adjacent and a minimum of eight peptide specific fragments. Protein modeling revealed that two of these covalent modifications (His(109), His(370)) are clearly associated with the active site, and that their Calpha atoms are located less than 9A from a known inhibitor binding site. In addition, the side chain of His(370) is within 4A of the heme group and its modification is expected to influence the orientation of the heme. The Calpha atom of Tyr(71) is within 14A of the potential inhibitor binding site and within 7A of the flap undergoing conformational change upon ligand binding, potentially placing Tyr(71) near the substrate as it enters and leaves the active site. The data support the hypothesis that EB can inactivate P450 2E1 by covalent modifications and thus add an additional regulatory mechanism for BD metabolism.  相似文献   

16.
Apoprotein formation and heme reconstitution of cytochrome P-450cam   总被引:1,自引:0,他引:1  
Apoprotein suitable for heme reconstitution has been prepared by an acid/butanone extraction of cytochrome P-450cam at pH 2.5. Absorption spectra of apo-P-450cam indicate less than 2% residual holoenzyme. Four tryptophan residues per molecule were estimated from the aromatic absorbance region of denatured apoprotein. Heme-reconstituted holoprotein was purified in 30% yield to a specific activity equivalent to the native enzyme. Absorption and EPR spectra of 57Fe- and 54Fe-heme-enriched P-450cam reveal complete restoration of the native active site.  相似文献   

17.
During the monooxygenase reaction catalyzed by cytochrome P450cam (P450cam), a ternary complex of P450cam, reduced putidaredoxin, and d-camphor is formed as an obligatory reaction intermediate. When ligands such as CO, NO, and O2 bind to the heme iron of P450cam in the intermediate complex, the EPR spectrum of reduced putidaredoxin with a characteristic signal at 346 millitesla at 77 K changed into a spectrum having a new signal at 348 millitesla. The experiment with O2 was carried out by employing a mutant P450cam with Asp251 --> Asn or Gly where the rate of electron transfer from putidaredoxin to oxyferrous P450cam is considerably reduced. Such a ligand-induced EPR spectral change of putidaredoxin was also shown in situ in Pseudomonas putida. Mutations introduced into the neighborhood of the iron-sulfur cluster of putidaredoxin revealed that a Ser44 --> Gly mutation mimicked the ligand-induced spectral change of putidaredoxin. Arg109 and Arg112, which are in the putative putidaredoxin binding site of P450cam, were essential for the spectral changes of putidaredoxin in the complex. These results indicate that a change in the P450cam active site that is the consequence of an altered spin state is transmitted to putidaredoxin within the ternary complex and produces a conformational change of the 2Fe-2S active center.  相似文献   

18.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

19.
Rupasinghe SG  Duan H  Schuler MA 《Proteins》2007,68(1):279-293
Towards defining the function of Arabidopsis thaliana fatty acid hydroxylases, five members of the CYP86A subfamily have been heterologously expressed in baculovirus-infected Sf9 cells and tested for their ability to bind a range of fatty acids including unsubstituted (lauric acid (C12:0) and oleic acid (C18:1)) and oxygenated (9,10-epoxystearic acid and 9,10-dihydroxystearic acid). Comparison between these five P450s at constant P450 content over a range of concentrations for individual fatty acids indicates that binding of different fatty acids to CYP86A2 always results in a higher proportion of high spin state heme than binding titrations conducted with CYP86A1 or CYP86A4. In comparison to these three, CYP86A7 and CYP86A8 produce extremely low proportions of high spin state heme even with the most effectively bound fatty acids. In addition to their previously demonstrated lauric acid hydroxylase activities, all CYP86A proteins are capable of hydroxylating oleic acid but not oxygenated 9,10-epoxystearic acid. Homology models have been built for these five enzymes that metabolize unsubstituted fatty acids and sometimes bind oxygenated fatty acids. Comparison of the substrate binding modes and predicted substrate access channels indicate that all use channel pw2a consistent with the crystal structures and models of other fatty acid-metabolizing P450s in bacteria and mammals. Among these P450s, those that bind internally oxygenated fatty acids contain polar residues in their substrate binding cavity that help stabilize these charged/polar groups within their largely hydrophobic catalytic site.  相似文献   

20.
Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号