首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophoblast, the outermost layer of the human placenta, lacks expression of the classical human leukocyte antigen (HLA) class I molecules. This prevents allorecognition by T cells but raises the question of what protects the trophoblast from natural killer (NK) cells. In a previous study, we have shown that choriocarcinoma cell (CC) resistance to NK lysis was mainly independent of HLA class I molecules. In the present study, we postulated that CC may prevent activation of NK cells by failing to stimulate their triggering receptors (TR). To test this hypothesis, we evaluated the lysis of JAR and JEG-3 CC after effective cross-linking and activation of NK cells by means of lectins or antibodies. Our results show that NK-resistant CC were sensitive to lysis by unstimulated peripheral blood lymphocytes in the presence of phytohemagglutin (PHA), to antibody-dependent cell cytotoxicity in presence of anti-Tja antibodies, and to monoclonal antibody redirected killing using anti-TR antibodies anti-CD16 and anti-CD244/2B4. Finally, CC fail to express CD48, the ligand for CD244/2B4. These results indicate that the resistance of CC to lysis results primarily from defective NK cell activation, at least partially due to the lack of expression of ligands, such as CD48, involved in the triggering of NK cells.  相似文献   

2.
HLA-G is a non-classical major histocompatibility complex class I molecule selectively expressed on extravillous trophoblast cells at the fetal—maternal interface. HLA-G may play an important role in maintaining maternal immune tolerance of the semi-allogenic fetus. In this study, we demonstrate for the first time the protective role of HLA-G during pregnancy. Indeed, cytotrophoblast cells of the fetus are resistant to lytic activity by maternal decidual natural killer cells. In order to precisely characterize the immunological functions of HLA-G products, we have investigated the protective role of the membrane-bound HLA-G1 and HLA-G2 isoforms against NK cell cytotoxicity. For this purpose, HLA-G1 and HLA-G2 cDNAs were transfected into the HLA-class I negative human K562 cell line. We demonstrate that both HLA-G1 and HLA-G2 transfectants inhibit NK cytolysis observed in peripheral blood from 25 donors (males and females). This led us to the conjecture that HLA-G is the public ligand for natural killer inhibitory receptors present in all individuals.  相似文献   

3.
This study was undertaken to investigate whether target cell class I HLA antigen expression induced by phorbol ester and interferon-alpha (IFN-alpha) was associated with resistance to natural killer (NK) cells and lymphokine-activated killer (LAK) cell-mediated cytotoxicity. Class I antigen expression on the surface of the K562 erythroleukemia cell line was enhanced by either IFN-alpha or phorbol ester (PDBu). Addition of PDBu together with IFN-alpha had a synergistic effect on class I antigen expression on the cells. Furthermore, synergism between IFN-alpha and PDBu was also found in class I antigen expression by MOLT-3 cells. This synergistic effect on class I antigen expression was blocked by the protein synthesis inhibitor (cycloheximide). Pretreatment of K562 cells with PDBu and IFN-alpha made them more resistant to lysis by NK and LAK cells than did either PDBu or IFN-alpha. In contrast to PDBu, 4 alpha PDD, a biologically inactive phorbol analogue, alone or combination with IFN-alpha, had no effect on class I antigen expression and susceptibility to lysis by NK and LAK cells. Kinetic experiments showed an inverse relationship between the expression of class I antigens and susceptibility to NK cell-mediated cytolysis. Using cold target competition analysis, target cells pretreated with PDBu and IFN-alpha clearly competed less effectively than did untreated cells for lysis of untreated target cells. These results demonstrate that target cells pretreated with PDBu and IFN-alpha decrease their sensitivity to natural killer and lymphokine-activated killer cells inversely with target cell class I HLA antigen expression.  相似文献   

4.
HLA-G: fetomaternal tolerance   总被引:1,自引:0,他引:1  
HLA-G is a non-classical major histocompatibility complex class I molecule selectively expressed on cytotrophoblasts. We have demonstrated ex vivo (from voluntary pregnancy interruption samples) the protector role of the HLA-G molecule present on the surface of cytotrophoblast cells versus the lysis carried out by the decidual uterine NK cells. This occurs under semi-allogenic conditions (maternal uterine NK cells and their trophoblast counterparts), as well as in allogenic conditions (maternal uterine NK cells and trophoblast cells from different mothers), thus defining the absence of maternal rejection at the moment of the implantation of the fertilized egg during pregnancy. Moreover, the expression of HLA-G on the cytotrophoblasts permits migration in maternal circulation and infiltration of maternal tissue (particularly in the skin), thereby probably creating a general state of tolerance. In the context of heart transplantation, in preliminary studies, we show that the presence of HLA-G in cardiac biopsy tissue prelevated from grafted patients significantly reduces acute rejects and shows an absence of chronic rejects. In the tumour context, the expression of HLA-G protein at the surface of primitive melanoma and metastatic cells confers protection from NK and CTL lytic activity. This suggests that HLA-G expression may impede the elimination of malignant cells by anti-tumour immune effector cells, constituting a newly described mechanism by which tumour cells may evade immunosurveillance. From there on E.D. Carosella introduced the breakthrough concept of 'HLA a tolerance molecule' in the heart of histocompatibility antigens, which had been described up till then as antigenes of defence and rejection, and the dramatic role of HLA-G in immunotolerance.  相似文献   

5.
HLA-G is a non-classical HLA class Ib molecule primarily expressed in trophoblast cells, and is thought to play a key role in the induction of materno-fetal tolerance during pregnancy. In addition, the HLA-G gene provides a suitable leader sequence peptide capable of binding to HLA-E. However, the existence of placentas homozygous for the HLA-G*0105N null allele suggests that HLA-G1 might not be essential for fetal survival. To investigate whether expression of the HLA-G*0105N allele supports HLA-E cell surface expression, we transfected the HLA-G*0105N gene into JAR trophoblast cells. Flow cytometry analysis showed that HLA-G*0105N-transfected cells express surface HLA-E to a similar extent as the unmutated HLA-G gene, whereas HLA-G1 cell surface expression was undetectable. Using the NKL cell line in a standard 51Cr release assay, the HLA-E molecules were found to inhibit natural killer lysis, through a mechanism partially dependent on CD94/NKG2A-mediated recognition.F.G. Sala and P-M. Del Moral contributed equally to this work.  相似文献   

6.
7.
At the implantation site, the uterine mucosa (decidua) is infiltrated by large numbers of natural killer (NK) cells. These NK cells are in close contact with the invading fetal trophoblast and we have proposed that they might be the effector cells that control the implantation of the allogeneic placenta. Recent characterization of NK cell receptors and their HLA class I ligands has suggested potential mechanisms by which NK cells might interact with trophoblast. However, what happens as a result of this interaction is not clear. The traditional method for investigating NK cell function in vitro is the protection from lysis of target cells by expression of HLA class I antigens. This might not be an accurate reflection of what happens in vivo. Another function of NK cells is the production of cytokines on contact with target cells. This could be an important outcome of the interaction between decidual NK cells and trophoblast. Decidual NK cells are known to produce a variety of cytokines; trophoblast cells express receptors for many of these cytokines, indicating that they can potentially respond. In this way, decidual NK cells have a significant influence on trophoblast behaviour during implantation.  相似文献   

8.
For a proper development of the placenta, maternal NK cells should not attack the fetal extravillous cytotrophoblast cells. This inhibition of maternal NK cells is partially mediated via the nonclassical MHC class I molecule HLA-G. Recently, we demonstrated that HLA-G forms disulfide-linked high molecular complexes on the surface of transfected cells. In the present study, we demonstrate that HLA-G must associate with beta(2)m for its interaction with CD85J/leukocyte Ig-like receptor-1 (LIR-1). Although HLA-G free H chain complexes are expressed on the surface, they are not recognized and possibly interfere with CD85J/LIR-1 and HLA-G interaction. The formation of these complexes on the cell surface might represent a novel mechanism developed specifically by the HLA-G protein aimed to control the efficiency of the CD85J/LIR-1-mediated inhibition. We also show that endogenous HLA-G complexes are expressed on the cell surface. These findings provide novel insights into the delicate interaction between extravillous cytotrophoblast cells and NK cells in the decidua.  相似文献   

9.
Adrenomedullin 2 (ADM2), also referred to as intermedin (IMD), is expressed in trophoblast cells in human placenta and enhances the invasion and migration of first-trimester HTR-8SV/neo cells. Further infusion of ADM2 antagonist in pregnant rat causes fetoplacental growth restriction, suggesting a role for ADM2 in maintaining a successful pregnancy. This study was undertaken to assess whether ADM2 protein is present in decidual tissue and colocalized with HLA-G-positive cytotrophoblast cells and natural killer cells; to assess whether ADM2 regulates expression of HLA-G in trophoblast cells; and to identify whether mitogen-activated protein kinase (MAPK) signaling pathway is involved in ADM2-induced trophoblast cell invasion and migration. Using immunohistochemical methods and RT-PCR, this study shows that ADM2 protein is colocalized with HLA-G-expressing cytotrophoblast cells as well as with NCAM1 (CD56) immunoreactivity in human first-trimester decidual tissue, and that ADM2 mRNA is expressed in peripheral blood natural killer cells. Further, ADM2 dose dependently increases the expression of HLA-G antigen in HTR-8SV/neo cells as well as in term placental villi explants, suggesting involvement of ADM2 in the regulation of HLA-G in trophoblast cells. In addition, interference with the activity of RAF and MAPK3/1 by their inhibitors, manumycin and U0126, respectively, reduces ADM2-induced HTR-8SV/neo cell invasion and migration. In summary, this study suggests a potential involvement for ADM2 in regulating HLA-G antigen at the maternal-fetal interface in human pregnancy and facilitating trophoblast invasion and migration via MAPK3/1 phosphorylation.  相似文献   

10.
11.
The nonclassical class I MHC molecule HLA-G is selectively expressed on extravillous cytotrophoblast cells at the maternal-fetal interface during pregnancy. HLA-G can inhibit the killing mediated by NK cells via interaction with the inhibitory NK cell receptor, leukocyte Ig-like receptor-1 (LIR-1). Comparison of the sequence of the HLA-G molecule to other class I MHC proteins revealed two unique cysteine residues located in positions 42 and 147. Mutating these cysteine residues resulted in a dramatic decrease in LIR-1 Ig binding. Accordingly, the mutated HLA-G transfectants were less effective in the inhibition of NK killing and RBL/LIR-1 induced serotonin release. Immunoprecipitation experiments demonstrated the involvement of the cysteine residues in the formation of HLA-G protein oligomers on the cell surface. The cysteine residue located at position 42 is shown to be critical for the expression of such complexes. These oligomers, unique among the class I MHC proteins, probably bind to LIR-1 with increased avidity, resulting in an enhanced inhibitory function of LIR-1 and an impaired killing function of NK cells.  相似文献   

12.
Human NK cells adhere to and lyse porcine endothelial cells (pEC) and therefore may contribute to the cell-mediated rejection of vascularized pig-to-human xenografts. Since MHC class I molecules inhibit the cytotoxic activity of NK cells, the expression of HLA genes in pEC has been proposed as a potential solution to overcome NK cell-mediated xenogeneic cytotoxicity. HLA-G, a minimally polymorphic HLA class I molecule that can inhibit a wide range of NK cells, is an especially attractive candidate for this purpose. In this study we tested whether the expression of HLA-G on pEC inhibits the molecular mechanisms that lead to adhesion of human NK cells to pEC and subsequent xenogeneic NK cytotoxicity. To this end two immortalized pEC lines (2A2 and PED) were stably transfected with HLA-G1. Rolling adhesion of activated human NK cells to pEC monolayers and xenogeneic cytotoxicity against pEC mediated by polyclonal human NK lines as well as NK clones were inhibited by the expression of HLA-G. The adhesion was partially reversed by masking HLA-G on pEC with anti-HLA mAbs or by masking the HLA-G-specific inhibitory receptor ILT-2 on NK cells with the mAb HP-F1. The inhibition of NK cytotoxicity by HLA-G was only partially mediated by ILT-2, indicating a role for other unknown NK receptors. In conclusion, transgenic expression of HLA-G may be useful to prevent human NK cell responses to porcine xenografts, but is probably not sufficient on its own. Moreover, the blocking of rolling adhesion by HLA-G provides evidence for a novel biological function of HLA molecules.  相似文献   

13.
14.
Natural killer (NK) cells represent an important component of the innate immune system. In ruminants there are few reports regarding presence or characterization of NK cells. Although absence of expression of major histocompatibility complex proteins on ovine trophoblast makes it potentially a target for NK cells, little is known about regulation of NK cells by products of pregnancy in sheep. Objectives of the present study were to determine whether cells with characteristics of NK cells exist in preparations of ovine peripheral blood lymphocytes (PBL) and endometrial epithelial cells (EEC) and to determine regulation of such cells by two pregnancy-associated molecules with immunoregulatory properties (ovine uterine serpin [OvUS] and interferon-tau [IFN-tau]). Ovine PBL and EEC lysed a putative NK target cell, the BHV-1 infected D17 cell, and lysis by both types of cells was neutralized by antibody against a molecule called function-associated molecule (FAM) expressed on NK cells of several species. Moreover, inhibitors that interfere with perforin-mediated lysis blocked NK-like activity of PBL. The NK-like lytic activity of PBL and EEC was inhibited by OvUS, whereas ovine and bovine IFN-tau significantly enhanced NK-like activity of PBL. In conclusion, NK-like activity present in preparations of ovine PBL and EEC is mediated by FAM(+) cells, is dependent on processes that involve perforin processing, and is regulated by OvUS and IFN-tau. Inhibition of NK-like activity of PBL and EEC by OvUS is consistent with a role for OvUS in protecting the conceptus from maternal cytotoxic lymphocytes. Stimulation of lysis by IFN-tau implies the existence of other inhibitory mechanisms during early pregnancy to prevent NK cell-mediated destruction of the conceptus.  相似文献   

15.
A King  Y W Loke 《Cellular immunology》1990,129(2):435-448
Freshly isolated decidual large granular lymphocytes (LGL) show natural killer (NK) activity against K562 cells but not against normal human trophoblast. We now show that these decidual LGL proliferate in vitro in response to recombinant interleukin-2 (rIL-2) and that these rIL-2-stimulated cells acquire a broad cytolytic potential that is characteristic of lymphokine-activated killer (LAK) cells. Both fetal fibroblasts and JEG-3 choriocarcinoma cells are resistant to lysis by freshly isolated decidual effectors but are readily killed by IL-2-stimulated decidual LGL. The ability to kill these target cells is acquired after only 18 hr exposure to rIL-2. rIL-2-activated decidual LGL also kill cultured normal trophoblast cells but much lower levels of cytolysis were seen even after the effectors had been stimulated with rIL-2 for 4-6 days. The preferential killing of malignant over normal human trophoblast cells raises questions about the potential role of IL-2-activated decidual LGL in the control of unduly invasive or malignant trophoblast populations in vivo.  相似文献   

16.
Human tumor cell lines were treated with interferon-gamma (IFN-gamma) and then used as target cells in NK assays to measure their ability to form conjugates and stimulate the production of NK cytotoxic factors (NKCF) and to determine their susceptibility to NKCF lysis. K562 and cell lines RS1, RS3, RS7, CAC, and CAP2, obtained from solid brain tumors, were used as targets, and peripheral blood lymphocytes (PBL) from normal donors were used as effector cells. IFN-gamma-treated cell lines had a decreased susceptibility to NKCF lysis and a decreased ability to induce the release of these factors without affecting target-effector cell binding. These results were not due to changes in HLA class I antigen expression, given that the level of HLA class I antigens on the tumor cell lines was not affected, the only exception being K562. In an attempt to further clarify the possible influence of HLA class I expression on K562, IFN-gamma-pretreated K562 cells were separated into HLA class I positive and HLA class I negative subsets for the NK assays. The results showed that both populations behaved similarly upon target-effector conjugate formation, whereas the HLA class I positive population showed a reduced susceptibility to lysis by NK cells and NKCF. Thus, these results establish that NK resistance induced by IFN-gamma is mediated by blocking the target cell's ability to activate NK cell triggering and release of NKCF and by blocking its susceptibility to lysis by these factors. This analysis helps to clarify not only the NK process but also the controversial regulatory effect of IFN in NK lysis.  相似文献   

17.
Various investigators have examined the relationship between tumor cell susceptibility to natural killer (NK) cell lysis and the expression of HLA class I antigens on the tumor cell. There is controversy as to whether or not an inverse relationship exists, and if so, the basis of the relationship between these two phenomena remains undefined. To address these questions, the genomic clones for two HLA antigens were transfected into the erythroleukemia cell line K562, a cell line that is used as the standard to assess human NK and major histocompatibility complex (MHC) nonrestricted cytolysis. Susceptibility to NK lysis was not affected by the de novo expression of HLA antigens on the K562 after DNA mediated gene transfer. Interferon-gamma (IFN-gamma) treatment of K562 induced levels of MHC class I antigen surface expression comparable to those found on the transfected cells; however, the IFN-gamma-treated cells were resistant to NK lysis. When very high levels of surface HLA antigens were induced on the transfectants, a potential effect of class I MHC expression on K562 lysis could be discerned that was distinct from the resistance to NK lysis induced by IFN-gamma-treatment.  相似文献   

18.
Expression of the nonclassical HLA class I antigen, HLA-G, is associated with immune tolerance in view of its role in maintaining the fetus in utero, allowing tumor escape, and favoring graft acceptance. Expressed on invasive trophoblast cells, HLA-G molecules bind inhibitory receptors on maternal T lymphocytes and NK cells, thereby blocking their cytolytic activities and protecting the fetus from maternal immune system attack. The HLA-G gene consists of 15 alleles, including a null allele, HLA-G*0105N. HLA-G*0105N presents a single base deletion, preventing translation of both membrane-bound (HLA-G1) and full-length soluble isoforms (HLA-G5) as well as of the spliced HLA-G4 isoform. The identification of healthy subjects homozygous for this HLA-G null allele suggests that the HLA-G*0105N allele may generate other HLA-G isoforms, such as membrane-bound HLA-G2 and -G3 and the soluble HLA-G6 and -G7 proteins, which may substitute for HLA-G1 and -G5, thus assuming the immune tolerogeneic function of HLA-G. To investigate this point, we cloned genomic HLA-G*0105N DNA and transfected it into an HLA-class I-positive human cell line. The results obtained indicated that HLA-G proteins were indeed present in HLA-G*0105N-transfected cells and were able to protect against NK cell lysis. These findings emphasize the role of the other HLA-G isoforms as immune tolerogeneic molecules that may also contribute to maternal tolerance of the semiallogenic fetus as well as tumor escape and other types of allogeneic tissue acceptance.  相似文献   

19.
Yan WH  Fan LA 《Cell research》2005,15(3):176-182
Human leukocyte antigen-G (HLA-G) has long been speculated as a beneficial factor for a successful pregnancy for its restricted expression on fetal-matemal extravillous cytotrophoblasts and its capability of modulating uterine natural killer cell (uNK) function such as cytotoxicity and cytokine production through NK cell receptors. HLA class I α1 domain is an important killer cell Ig-like receptor (KIR) recognition site and the Met^76 and Gln^79 are unique to HLA-Gin this region. NK cell receptor KIR2DL4 is a specific receptor for HLA-G, yet the recognition site on HLA-G remains unknown. In this study, retroviral transduction was applied to express the wild type HLA-G (HLA-wtG), mutant HLA-G(HLA-mG) on the chronic myelogenous leukemia cell line K562 cells and KIR2DL4 molecule on NK-92 cells,respectively. KIR2DL4-IgG Fc fusion protein was generated to determine the binding specificity between KIR2DL4 and HLA-G. Our results showed that residue Met76, Gln79 mutated to Ala^76.79 in the α1 domain of HLA-G protein could affect the binding affinity between KIR2DL4 and HLA-G, meanwhile, the KIR2DL4 transfected NK-92 cells (NK-92-2DL4) showed a considerably different cytolysis ability against the HLA-wtG and HLA-mG transfected K562 targets.Taken together, our data indicated that residue Met^76 and Gin^79 in HLA-G α1 domain plays a critical role in the recognition of KIR2DL4, which could be an explanation for the isoforms of HLA-G, all containing the α1 domain, with the potential to regulate NK functions.  相似文献   

20.
Evaluation of trophoblast cells by immunohistology has shown that subpopulations of trophoblast cells express class I HLA differently from one another and differently from embryonic and adult cells. Placental syncytial trophoblast does not express detectable levels of class I HLA; chorion membrane cytotrophoblasts bind one mAb to monomorphic determinants of class I Ag, W6/32, but not a second, 61D2. In the present study, sections of normal term placentae and matching extraplacental membranes were evaluated by in situ hybridization procedures for cells containing class I HLA mRNA using pHLA1.1, which is complementary to HLA-B. Class I Ag expression was identified by immunohistology using two mAb to class I HLA (W6/32, 61D2) and the mAb 4E to identify HLA-B. Placental syncytial trophoblast contained low to undetectable levels of class I mRNA and failed to bind all three mAb. Chorion membrane cytotrophoblast cells contained moderate levels of class I HLA mRNA and were positive with the mAb W6/32 but were negative with 61D2 and 4E. In adjacent tissues, fetal mesenchymal cells and maternal decidual cells contained high levels of class I mRNA and were positive with all three mAb. The results suggest that syncytial trophoblast may not express class I HLA because of low steady-state levels of class I HLA mRNA. In contrast, chorionic cytotrophoblast cells may express truncated versions of class I HLA or nonclassical HLA-A,B,C-like Ag. Regulation of the expression of class I HLA gene products may be essential to the development of a satisfactory immunologic relationship between the mother and her semiallogeneic fetus during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号