首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
白细胞与内皮细胞的粘附   总被引:1,自引:0,他引:1  
白细胞与内皮细胞相互作用由粘附分子介导.整合素、免疫球蛋白及选择素家族的粘附分子在这两种细胞的粘附中起关键作用.粘附的起始阶段由选择素介导,随后由CD11/CD18复合物与ICAM-1形成更为紧密的结合.多种细胞因子及炎症反应可诱导粘附.抗粘附分子单抗、药物等可抑制粘附.  相似文献   

2.
The selectins (lectin-EGF-complement binding-cell adhesion molecules [LEC-CAMs]) are a family of mammalian receptors implicated in the initial interactions between leukocytes and vascular endothelia, leading to lymphocyte homing, platelet binding, and neutrophil extravasation. The three known selectins, L-selectin (leukocyte adhesion molecule-1 [LECAM-1]), E-selectin (endothelial-leukocyte adhesion molecule-1 [ELAM-1]), and P-selectin (GMP-140) share structural features that include a calcium-dependent lectin domain. The sialyl Lewis(x) carbohydrate epitope has been reported as a ligand for both E- and P-selectins. Although L-selectin has been demonstrated to bind to carbohydrates, structural features of potential mammalian carbohydrate ligand(s) have not been well defined. Using an ELISA developed with a sialyl Lewis(x)-containing glycolipid and an E-selectin-IgG chimera, we have demonstrated the direct binding of the L-selectin-IgG chimera to sialyl Lewis(x). This recognition was calcium dependent, and could be blocked by Mel-14 antibody but not by other antibodies. Recognition was confirmed by the ability of cells expressing the native L-selectin to adhere to immobilized sialyl Lewis(x). These data suggest that the sialyl Lewis(x) oligosaccharide may form the basis of a recognition domain common to all three selectins.  相似文献   

3.
选择素与肿瘤转移   总被引:3,自引:1,他引:3  
选择素是已知的细胞粘附分子家族之一,其生理功能是在炎症发生时介导白细胞与血管内皮间的起始粘附.近年来,大量实验证据表明选择素在肿瘤转移的过程中也起重要作用,主要是介导肿瘤细胞与血小板及血管内皮间的起始粘附,另外选择素及其配体也可以作为信号分子促进肿瘤的转移.因此,在将来的临床应用中,选择素及其配体可以作为血清诊断标记监控肿瘤及肿瘤转移的发生;通过抑制选择素与其配体的相互作用,或阻断选择素表达的途径防止肿瘤转移.  相似文献   

4.
l- and P-selectin are known to require sulfation in their ligand molecules. We investigated the significance of carbohydrate 6-sulfation and tyrosine sulfation in selectin-mediated cell adhesion. COS-7 cells were genetically engineered to express P-selectin glycoprotein ligand-1 (PSGL-1) or its mutant in various combinations with 6-O-sulfotransferase (6-Sul-T) and/or alpha1-->3fucosyltransferase VII (Fuc-T VII). The cells transfected with PSGL-1, 6-Sul-T, and Fuc-T VII cDNAs supported rolling mediated by all three selectins and provided the best experimental system so far to estimate kinetic parameters in selectin-mediated cell adhesion for all three selectins using the identical rolling substrate and to compare the ligand specificity of each selectin. L-selectin-mediated rolling was drastically impaired if the cells lacked carbohydrate 6-sulfation elaborated by 6-Sul-T, but not affected when PSGL-1 was replaced with a mutant lacking three tyrosine residues at its NH(2) terminus. L-selectin-mediated adhesion was also hardly affected by mocarhagin treatment of the cells, which cleaved a short peptide containing sulfated tyrosine residues from PSGL-1. In contrast, P-selectin-mediated rolling was abolished when PSGL-1 was either mutated or cleaved by mocarhagin at its NH(2) terminus, whereas the cells expressing PSGL-1 and Fuc-T VII but not 6-Sul-T showed only a modest decrease in P-selectin-mediated adhesion. These results indicate that L-selectin prefers carbohydrate 6-sulfation much more than tyrosine sulfation, whereas P-selectin favors tyrosine sulfation in the PSGL-1 molecule far more than carbohydrate 6-sulfation. E-selectin-mediated adhesion was sulfation-independent requiring only Fuc-T VII, and thus the three members of the selectin family have distinct requirements for ligand sulfation.  相似文献   

5.
The selectins are carbohydrate-binding cell adhesion molecules acting in the vascular system. They mediate the docking of leukocytes to the blood vessel wall and the rolling of these cells along the endothelial cell surface. These adhesion phenomena initiate the entry of leukocytes into sites of inflammation as well as the migration of recirculating lymphocytes into secondary lymphoid tissues. Blocking selectin function with antibodies or oligosaccharides has proven to be beneficial in various animal models of inflammation and models of ischemia/reperfusion damage. This has raised much interest in the identification of the physiological ligands of the selectins. Several glycoprotein ligands have been identified, some of which can even be selectively isolated from cellular detergent extracts using a selectin as an affinity probe. Four of these “high affinity” ligands have been cloned. The structural requirements of their interaction with the selectins is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Leukocyte Adhesion: What's the Catch?   总被引:3,自引:0,他引:3  
A recent study shows that the leukocyte adhesion molecules known as selectins form 'catch' bonds, the dissociation rate of which decreases with increasing applied force. The ability of selectins to switch between catch and slip bonds, where dissociation increases with force, can explain the shear threshold effect, in which leukocyte adhesion goes through a maximum with increasing shear rate.  相似文献   

7.
The selectin family of adhesion molecules mediates the initial interactions of leukocytes with endothelium. The extracellular region of each selectin contains an amino-terminal C-type lectin domain, followed by an EGF-like domain and multiple short consensus repeat units (SCR). Previous studies have indirectly suggested a role for each of the extracellular domains of the selectins in cell adhesion. In this study, a panel of chimeric selectins created by exchange of domains between L- and P-selectin was used to directly examine the role of the extracellular domains in cell adhesion. Exchange of only the lectin domains between L- and P-selectin conferred the adhesive and ligand recognition functions of the lectin domain of the parent molecule. However, chimeric selectins which contained both the lectin domain of L- selectin and the EGF-like domain of P-selectin exhibited dual ligand- binding specificity. These chimeric proteins supported adhesion both to myeloid cells and to high endothelial venules (HEV) of lymph nodes and mesenteric venules in vivo. Exchange of the SCR domains had no detectable effect on receptor function or specificity. Thus, the EGF- like domain of P-selectin may play a direct role in ligand recognition and leukocyte adhesion mediated by P-selectin, with the lectin plus EGF- like domains collectively forming a functional ligand recognition unit.  相似文献   

8.
The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.  相似文献   

9.
On human endothelial cells from umbilical cord (HUVEC) are present, in addition to E- and P-selectins, their cognate ligands. Differently from selectins, the ligand expression is constitutive and not modulated by interleukin-1beta. Such ligands appear to be different from the ones present in promyelocytic cells in order to promote cell adhesion to immobilized selectins. The expression of selectin-ligands on HUVEC cells suggest that selectins can participate in endothelial signalling besides their role as adhesion molecules for circulating blood cells. However, despite their role in chemotaxis, selectins do not contribute to HUVEC tube formation in Matrigel.  相似文献   

10.
Bacterial pathogenesis: exploiting cellular adherence   总被引:14,自引:0,他引:14  
Cell adhesion molecules, such as integrins, cadherins, the immunoglobulin superfamily of cell adhesion molecules and selectins, play important structural roles and are involved in various signal transduction processes. As an initial step in the infectious process, many bacterial pathogens adhere to cell adhesion molecules as a means of exploiting the underlying signaling pathways, entering into host cells or establishing extracellular persistence. Often, bacteria are able to bind to cell adhesion molecules by mimicking or acting in place of host cell receptors or their ligands. Recent studies have contributed to our understanding of bacterial adherence mechanisms and the consequences of receptor engagement; they have also highlighted alternative functions of cell adhesion molecules.  相似文献   

11.
在炎症反应中,白细胞在内皮细胞上滚动由选择素分子与其配体分子相互作用所导致,选择素分子有3种,P选择素分子(P—selectin)、E选择素分子(E—selectin)、L选择素分子(L—selectin),选择素分子与其对应的P-选择素糖蛋白配体-1(PSGL-1)的相互作用起着重要的作用。用等离子共振、流动腔、原子力显微镜等技术能定量分析选择素分子与其配体分子相互作用的动力学反应。  相似文献   

12.
Reddy KV  Mangale SS 《Tissue & cell》2003,35(4):260-273
Cell-cell and cell-extracellular matrix (ECM) interactions play a critical role in various developmental processes, including differentiation, proliferation and migration of cells. ECM proteins can influence cellular function thus creating a complex feedback mechanism. The adhesion of cells to each other, their ECM proteins and endothelial surfaces is mediated by a variety of membrane proteins collectively known as adhesion molecules. Adhesion molecules have been further divided into five subfamilies, the integrins, the selectins, the cadherins, the mucins and the immunoglobulin superfamily. Members of the integrin family of cell surface adhesion receptors are important mediators of cell-ECM contact. Integrin receptors are alpha beta heterodimers with a transmembrane segment, a short cytoplasmic domain and a large extracellular domain. The role of integrins in reproduction has been established. Several reasons make these molecules very attractive due to their constant involvement from egg to birth. They participate in sperm-egg interaction, fertilization, implantation and placentation in many species including humans. Integrins provide signals to individual cells essential for growth and development of different tissues. In the present review, we describe (1) the regulatory pathways for controlling expression of integrins in the endometrium, (2) various biomarkers and their role in endometrial function, (3) reproductive disorders in women related to aberrant integrin expression in the endometrium and (4) the functional significance of integrins available from gene knockout studies.  相似文献   

13.
Abstract

The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.  相似文献   

14.
The monoclonal L3 antibody reacts with an N-glycosidically linked carbohydrate structure on at least nine glycoproteins of adult mouse brain. Three out of the L3 epitope-carrying glycoproteins could be identified as the neural cell adhesion molecules L1 and myelin-associated glycoprotein, and the novel adhesion molecule on glia. Expression of the L3 carbohydrate epitope is regulated independently of the protein backbone of these three glycoproteins. Based on the observation that out of three functionally characterized L3 epitope-carrying glycoproteins three fulfill the operational definition of an adhesion molecule, we would like to suggest that they form a new family of adhesion molecules that is distinct from the L2/HNK-1 carbohydrate epitope family of neural cell adhesion molecules. Interestingly, some members in each family appear to be unique to one family while other members belong to the two families.  相似文献   

15.
Engagement of cells with the extracellular matrix (ECM) proteins is crucial for various biological processes, including cell adhesion, spreading, proliferation, differentiation, migration, apoptosis, and gene induction, contributing to maintenance of tissue integrity, embryogenesis, wound healing, and the metastasis of tumor cells (Hynes, 2002b; Juliano, 2002). The engagement involves cell adhesion mediated by integrins, a large family of cell adhesion receptors that are transmembrane glycoproteins which bind to ECM or to counter-receptors on neighbor cells. In this review, the molecular basis of signaling mediated by integrins and their collaboration with growth factor receptors will be discussed, based on recent observations. Although other cell adhesion receptors including cadherins, selectins, syndecans, and the immunoglobulin superfamily of cell adhesion molecules (IgCAMs) can play important roles or be involved in these processes, we suggest readers refer to recent outstanding reviews on them (Barclay, 2003; Brummendorf and Lemmon 2001; Panicker et al. 2003).  相似文献   

16.
Adhesion molecules are known to -be important components of an active T-cell mediated immune response. Signals generated at a site of inflammation cause circulating T cells to respond by rolling, arrest and then transmigration through the endothelium, all of which are mediated by adhesion molecules. Consequently, strategies have been developed to treat immune disorders with specific antibodies that block the interaction of adhesion molecules. However, the therapeutic effects of such remedies are not always achieved. Our recent investigations have revealed that intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) work together with chemokines to induce immunosuppression mediated by Mesenchymal stem cells (MSCs), thus demonstrating the dual role of adhesion molecules in immune responses. Since MSCs represent an important component of the stromal cells in an inflammatory microenvironment, our findings provide novel information for understanding the regulation of immune responses and for designing new strategies to treat immune disorders.Adhesion molecules are cell surface proteins that mediate the interaction between cells, or between cells and the extracellular matrix (ECM). There are four families of adhesion molecules: immunoglobulin-like adhesion molecules, integrins, cadherins and selectins. Most of them are typical transmembrane proteins that have cytoplasmic, transmembrane and extracellular domains. In the immune system, cell adhesion plays a critical role in initiating and sustaining an effective immune response against foreign pathogens.1 Based on our recent data, we discuss herein the role of immunoglobulin superfamily cell adhesion molecules, ICAM1 and VCAM-1, in the immunosuppression mediated by Mesenchymal stem cells.  相似文献   

17.
Modeling and structure-function studies on two cell surface proteins are presented, which are implicated in the regulation of immune responses and cell adhesion. In the first part, model building of RANK, a new member of the tumor necrosis factor receptor (TNFR) superfamily (TNFRSF), is reported. The model is analyzed in light of structural studies on the TNFR-ligand complex and molecular model-based mutagenesis analyses of CD40-ligand and Fas-ligand interactions. The study makes it possible to predict residues important for ligand binding to RANK and further rationalizes differences in specificity between TNFR-like cell surface receptors. In the second part, recent investigations on the structure and carbohydrate binding site of CD44, a member of the link protein family, are discussed. The binding site in CD44 is compared to calcium-dependent (C-type) lectins, which include the selectins, another family of cell adhesion molecules. The studies on TNFRSF members and link proteins reported herein complement a recent review article in this journal, which focused on modeling and binding site analysis of immune cell surface proteins.Electronic Supplementary Material available.  相似文献   

18.
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.  相似文献   

19.
The human lymphocyte homing receptor LAM-1, like its murine counterpart MEL-14, functions as a mammalian lectin, and mediates the binding of leukocytes to specialized high endothelial cells in lymphoid organs (HEV). LAM-1 is a member of a new family of cell adhesion molecules, termed selectins or LEC-CAMs, which also includes ELAM-1 and PAD-GEM (GMP-140/CD62). To localize the regions of LAM-1 that are involved in cell adhesion, we developed chimeric selectins, in which various domains of PAD-GEM were substituted into LAM-1, and used these chimeric proteins to define the domain requirements for carbohydrate binding, and to localize the regions recognized by several mAb which inhibit the adhesion of lymphocytes to lymph node HEV. The binding of PPME or fucoidin, soluble complex carbohydrates that specifically define the lectin activity of LAM-1 and MEL-14, required only the lectin domain of LAM-1. The LAM1-1, LAM1-3, and LAM1-6 mAb each strongly inhibit the binding of lymphocytes to HEV in the in vitro frozen section assay, and defined three independent epitopes on LAM-1. Blocking of PPME or fucoidin binding by LAM1-3 indicated that this site is identical, or in close proximity, to the carbohydrate binding site, and analysis of the binding of LAM1-3 to chimeric selectins showed that the epitope detected by LAM1-3 is located within the lectin domain. Although the LAM1-6 epitope is also located in the lectin domain, LAM1-6 did not affect the binding of PPME or fucoidin. The LAM1-1 epitope was located in, or required, the EGF domain, and, importantly, binding of LAM1-1 significantly enhanced the binding of both PPME and fucoidin. These results suggest that adhesion mediated by LAM-1 may involve cooperativity between functionally and spatially distinct sites, and support previous data suggesting a role for the EGF domain of LAM-1 in lymphocyte adhesion to HEV.  相似文献   

20.
Leukocyte adhesion is of pivotal functional importance, because most leukocyte functions depend on cell–cell contact. It must be strictly controlled, both at the level of specificity and strength of interaction, and therefore several molecular systems are involved. The most important leukocyte adhesion molecules are the selectins, the leukocyte-specific 2-integrins and the intercellular adhesion molecules. The selectins induce an initial weak contact between cells, whereas firm adhesion is achieved through integrin–intercellular adhesion molecular binding. Although studies during the past twenty years have revealed several important features of leukocyte adhesion much is still poorly understood, and further work dealing with several aspects of adhesion is urgently needed. In this short essay, we review some recent developments in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号