首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternansucrase (EC 2.4.1.140, sucrose: (1-->6), (1-->3)-alpha-D-glucan 6(3)-alpha-D-glucosyltransferase) is a D-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked D-glucan from sucrose. It also synthesizes oligosaccharides via D-glucopyranosyl transfer to various acceptor sugars. We have studied the acceptor products arising from methyl glycosides as model compounds in order to better understand the specificity of alternansucrase acceptor reactions. The initial product arising from methyl beta-D-glucopyranoside was methyl beta-isomaltoside, which was subsequently glucosylated to yield methyl beta-isomaltotrioside and methyl alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside. These products are analogous to those previously described from methyl alpha-D-glucopyranoside. The major initial acceptor product from methyl alpha-D-mannopyranoside was methyl alpha-D-glucopyranosyl-(1-->6)-alpha-D-mannopyranoside, but several minor products were also isolated and characterized, including a 3,6-di-O-substituted mannopyranoside. Methyl alpha-D-galactopyranoside yielded two initial products, methyl alpha-D-glucopyranosyl-(1-->3)-alpha-D-galactopyranoside and methyl alpha-D-glucopyranosyl-(1-->4)-alpha-D-galactopyranoside, in a 2.5:1 molar ratio. Methyl D-allopyranosides were glucosylated primarily at position 6, yielding methyl alpha-D-glucopyranosyl-(1-->6)-D-allopyranosides. The latter subsequently gave rise to methyl alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-D-allopyranosides. In general, the methyl alpha-D-hexopyranosides were better acceptors than the corresponding beta-glycosides.  相似文献   

2.
Glucosidase inhibitors alpha-D-glucopyranosyl-(1-->4)-1-deoxynojirimycin and beta-D-glucopyranosyl-(1-->4)-1-deoxynojirimycin were prepared from maltose and cellobiose, respectively, via the corresponding 5,6-eno derivatives, their epoxidation and the subsequent double reductive amination of the resulting 5-uloses. In both cases, the reported route is the first chemical synthesis not based on enzymatic glucosyl transfer.  相似文献   

3.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

4.
The title pentasaccharide was synthesized via a 2+3 strategy. The disaccharide donor, 3-O-acetyl-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (8), was obtained by selective coupling of allyl 2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranoside with 3-O-acetyl-2-O-benzoyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (4), followed by deallylation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranoside (12), was prepared by coupling of allyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranoside with 4, followed by deacetylation. Condensation of 8 with 12, followed by epoxidation, and deprotection, gave the target pentaoside.  相似文献   

5.
The alpha-(1-->2)-L-galactosyltransferase from the albumen gland of the vineyard snail Helix pomatia exhibits high alpha-(1-->2)-L-fucosyltransferase activity and can be used to transfer L-fucose from GDP-L-fucose to terminal, non-reducing D-galactose residues of an oligosaccharide, thus providing facile access to a range of H-antigen-containing oligosaccharides. The enzymatic glycosylation was applied here on a milligram scale to a series of disaccharide acceptor substrates. Apparently the site of interglycosidic linkage between the terminal and subterminal acceptor sugar units is of little or no consequence. The homologous series of trisaccharides thus produced were fully characterised by NMR analysis of their peracetates.  相似文献   

6.
The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk)   总被引:1,自引:0,他引:1  
The physiologically active, gel-forming fraction of the alkali-extractable polysaccharides of Plantago ovata Forsk seed husk (psyllium seed) and some derived partial hydrolysis products were studied by compositional and methylation analysis and NMR spectroscopy. Resolving the conflicting claims of previous investigators, the material was found to be a neutral arabinoxylan (arabinose 22.6%, xylose 74.6%, molar basis; only traces of other sugars). With about 35% of nonreducing terminal residues, the polysaccharide is highly branched. The data are compatible with a structure consisting of a densely substituted main chain of beta-(1-->4)-linked D-xylopyranosyl residues, some carrying single xylopyranosyl side chains at position 2, others bearing, at position 3, trisaccharide branches having the sequence L-Araf-alpha-(1-->3)-D-Xylp-beta-(1-->3)-l-Araf. The presence of this sequence is supported by methylation and NMR data, and by the isolation of the disaccharide 3-O-beta-D-xylopyranosyl-L-arabinose as a product of partial acid hydrolysis of the polysaccharide.  相似文献   

7.
The production of an adiabatic map for a di- or trisaccharide requires the generation of many relaxed maps, ideally 59,049 for a disaccharide or 4,782,969 for a trisaccharide composed by hexose residues, due to a combination of exocyclic angle torsions. As the production of this amount of maps is usually ruled out for time considerations, different approaches were exploited. When working at low dielectric constants, starting points originated in cooperative hydrogen bonds through the rings are usually sufficient to produce an adiabatic map, but at higher dielectric constants those circuits are meaningless, and many low-energy conformers appear in each energy well. Herein, different conformations of four disaccharides (beta-4-linked mannobiose, and three galactobioses, linked alpha-(1-->3), alpha-(1-->4), and beta-(1-->4)) and one trisaccharide (beta-4-linked mannotriose) were minimized using mm3 at epsilon = 80, and the difference in energy produced by changes in torsional angles was recorded. A remarkable additive effect was found to occur when the exocyclics were gathered in groupings of two or three neighboring angles. Thus, in most cases, each grouping can be studied separately, and the minimum energy conformers can be predicted without the need of resorting to thousands of calculations. In some cases where two protons of different groups show steric interactions in some specific conformations, small deviations of the additivity were encountered. Anyway, a complex system with many variables can be transformed in one with many fewer variables, thus simplifying further studies. An attempt to calculate the same effect at epsilon = 3 shows that hydrogen bonding and electrostatic interactions make impossible to find those additive effects, thus precluding its utilization at such low dielectric constants.  相似文献   

8.
Synthesis of the oligosaccharide domain of acarbose was reinvestigated and was optimally performed using a maltosidic acceptor, already bearing a alpha-D-Glc-(1-->4)-D-Glc bond, and a new D-fucopyranosyl donor. The crucial glycosylation step was improved by varying three different parameters and notably by focusing on the C-4 protecting group of the fucosyl residue, solvent and promoter. The resulting trisaccharide was further transformed into an electrophilic species in order to open further derivatization perspectives for designing new acarbose analogues. Substitution reactions were efficiently carried out with azide and thiocyanate anions. Two other potentially interesting trisaccharidic compounds were also synthesized, i.e. the C-4III amine and the corresponding isothiocyanate.  相似文献   

9.
We reported the synthesis of beta-D-lactosaminide with a 2-aminopyridyl group that is linked to a glycosyl tether at the reducing end. This fluorescent disaccharide acts as an acceptor for both alpha-(2-->6)- and alpha-(2-->3)-sialyltransferases. In addition, the acceptor ability of this disaccharide was evaluated and compared with that of beta-D-lactosaminide having a dansyl or a 4-methylumbelliferyl group.  相似文献   

10.
The O-polysaccharide of the lipopolysaccharide of Pseudomonas putida FERM P-18867 was found to contain D-mannose and D-rhamnose and have the following structure of the trisaccharide repeating unit:-->2)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->3)-beta-D-Manp-(1-->  相似文献   

11.
Stortz CA 《Carbohydrate research》2006,341(15):2531-2542
The adiabatic potential energy surfaces (PES) of six trisaccharides, sulfated derivatives of alpha-D-Gal p-(1-->3)-beta-D-Gal p-(1-->4)-alpha-D-Gal p and beta-D-Gal p-(1-->4)-alpha-D-Gal p-(1-->3)-beta-D-Gal p representing models of lambda-, mu-, and nu-carrageenans were obtained using the MM3 force-field at epsilon = 3. Each PES was described by a single contour map for which the energy is plotted against the two psi glycosidic angles, given the small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps. Most surfaces appear as expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. Only small interactions between the first and third monosaccharidic moieties of the trisaccharides are observed. The flexibility of the alpha-linkages appears nearly identical to that in their disaccharide counterparts, with only one exception, where it appears reduced by the presence of the third monosaccharide. On the other hand, the flexibility of the beta-linkage appears to be equal or sometimes even higher than that observed for the corresponding disaccharide.  相似文献   

12.
The potential energy surfaces of several alpha-(1-->3)- and beta-(1-->4)-linked disaccharides were obtained and plotted in terms of energy versus psi glycosidic angle. These plots were compared to those obtained previously in the way of the usual 3D contour maps, which relate the energy with the two glycosidic angles (phi and psi). Given the usually small variations of the phi angle in the low-energy regions (at least using MM3), both kinds of graphs lead to similar conclusions concerning flexibility measurements by two different methods and assessment of the effects of sulfation and/or hydroxyl group orientation. Only second-order effects were found with some sulfated disaccharides, not changing the general conclusions. The computational efforts required to produce those plots are smaller, and the plots are easier to interpret. Besides, the conversion of a 3D map into a 2D plot leaves the possibility of constructing 3D maps of carbohydrates including a second variable different to phi, e.g., the second psi angle of a trisaccharide or the omega angle of a 6-linked disaccharide.  相似文献   

13.
Côté GL  Sheng S 《Carbohydrate research》2006,341(12):2066-2072
In the presence of suitable acceptor molecules, dextransucrase makes a homologous series of oligosaccharides in which the isomers differ by a single glucosyl unit, whereas alternansucrase synthesizes one trisaccharide, two tetrasaccharides, etc. For the example of maltose as the acceptor, if one considers only the linear, unbranched possibilities for alternansucrase, the hypothetical number of potential products increases exponentially as a function of the degree of polymerization (DP). Experimental evidence indicates that far fewer products are actually formed. We show that only certain isomers of DP >4 are formed from maltose in measurable amounts, and that these oligosaccharides belong to the oligoalternan series rather than the oligodextran series. When the oligosaccharide acceptor products from maltose were separated by size-exclusion chromatography and HPLC, only one pentasaccharide was isolated. Its structure was alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc. Two hexasaccharides were formed in approximately equal quantities: alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc and alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc. Just one heptasaccharide was isolated from the reaction mixture, alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc. We conclude that the enzyme is incapable of forming two consecutive alpha-(1-->3) linkages, and does not form products with more than two consecutive alpha-(1-->6) linkages. The distribution of products may be kinetically determined.  相似文献   

14.
Glycosidation of 2,5-anhydro-1,6-di-O-benzoyl-D-mannitol with methyl(2,3,4-tri-O-acetyl-alpha-d-glucopyranosyl-1-O-trichloroacetimidate)uronate in the presence of trimethylsilyl triflate afforded the corresponding 3-O-beta-glycoside, which after deprotection was converted into its hexa-O-sulfate with DMF x SO3 to give after treatment with sodium acetate and subsequent saponification of the methyl ester with sodium hydroxide the hepta sodium salt of 2,5-anhydro-3-O-(beta-d-glucopyranosyl uronate)-D-mannitol hexa-O-sulfate. Glycosidation of the same acceptor with the alpha-thiophenylglycoside of methyl 2,4-di-O-acetyl-3-O-benzyl-L-idopyranosyl uronate in the presence of NIS/TfOH afforded the corresponding 3-O-alpha-glycoside in very low yield, therefore the alpha-thiophenylglycoside of 2-O-acetyl-2,4-O-benzylidene-3-O-benzyl-L-idopyranose was used as donor. The terminal hydroxymethyl group of the obtained disaccharide was subsequently oxidised with NaOCl/TEMPO and the obtained iduronic acid derivative was converted into the hepta sodium salt of 2,5-anhydro-3-O-(-alpha-L-idopyranosyluronate)-D-mannitol hexa-O-sulfonate with DMF x SO3 and subsequent treatment with sodium acetate.  相似文献   

15.
An acidic polysaccharide was isolated from Pseudoalteromonas flavipulchra type strain NCIMB 2033(T) and found to consist of 6-deoxy-L-talose (L-6dTal), D-galactose and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). The identities of the monosaccharides were ascertained by sugar analysis and 1D 1H and 13C NMR spectroscopy in conjunction with 2D COSY, TOCSY, ROESY and 1H, 13C HMQC experiments, which enabled determination of the following structure of the trisaccharide repeating unit of the polysaccharide:-->3)-alpha-L-6dTalp4Ac-(1-->3)-beta-D-Galp-(1-->7)-alpha-Kdop-(2-->.  相似文献   

16.
Four derivatives of 2(II)-deoxycellobiose were synthesized from d-glucal and acceptor sugars (d-glucose, d-xylose, d-mannose, and 2-deoxy-d-arabino-hexose) using a cellobiose phosphorylase from Cellvibrio gilvus. The enzyme was found to be an effective catalyst to synthesize the beta-(1-->4) linkage of 2-deoxy-d-arabino-hexopyranoside. The acceptor specificity for the d-glucal reaction was identical to that for the alpha-d-glucose 1-phosphate reaction, but the activity of d-glucal was approximately 500 times less than that of alpha-d-glucose 1-phosphate, using 10mM substrates.  相似文献   

17.
For the first time, glucosylation of alpha-butyl- and alpha-octylglucopyranoside was achieved using dextransucrase (DS) of various specificities, and alternansucrase (AS) from Leuconostoc mesenteroides. All the glucansucrases (GS) tested used alpha-butylglucopyranoside as acceptor; in particular, DS produced alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside and alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside. In contrast, alpha-octylglucopyranoside was glucosylated only by AS which was shown to be the most efficient catalyst. The conversion rates, obtained with this enzyme at sucrose to acceptor molar ratio of 2:1 reached 81 and 61% for alpha-butylglucopyranoside and alpha-octylglucopyranoside, respectively. Analyses obtained from liquid chromatography coupled with mass spectrometry revealed that different series of alpha-alkylpolyglucopyranosides regioisomers of increasing polymerization degree can be formed depending on the specificity of the catalyst.  相似文献   

18.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

19.
Cellobiose was tested as acceptor in the reaction catalyzed by alternansucrase (EC 2.4.1.140) from Leuconostoc mesenteroides NRRL B-23192. The oligosaccharides synthesized were compared to those obtained with dextransucrase from L. mesenteroides NRRL B-512F. With alternansucrase and dextransucrase, overall oligosaccharide synthesis yield reached 30 and 14%, respectively, showing that alternansucrase is more efficient than dextransucrase for cellobiose glucosylation. Interestingly, alternansucrase produced a series of oligosaccharides from cellobiose. Their structure was determined by mass spectrometry and [13C-1H] NMR spectroscopy. Two trisaccharides are first produced: alpha-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-D-glucopyranose (compound A) and alpha-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->4)-D-glucopyranose (compound B). Then, compound B can in turn be glucosylated leading to the synthesis of a tetrasaccharide with an additional alpha-(1-->6) linkage at the non-reducing end (compound D). The presence of the alpha-(1-->3) linkage occurred only in the pentasaccharides (compounds C1 and C2) formed from tetrasaccharide D. Compounds B, C1, C2 and D were never described before. They were produced efficiently only by alternansucrase. Their presence emphasizes the difference existing in the acceptor reaction selectivity of the various glucansucrases.  相似文献   

20.
An NMR study of proton chemical shift patterns of known linear alpha-D-glucopyranose di- and trisaccharide structures was carried out. Chemical shift patterns for (alpha1-->2)-, (alpha1-->3)-, (alpha1-->4)- and (alpha1-->6)-linked D-glucose residues were analysed and compared to literature data. Using these data, a 1H NMR structural-reporter-group concept was formulated to function as a tool in the structural analysis of alpha-D-glucans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号