首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The initiation of coagulation results from the activation of factor X by an enzyme complex (Xase) composed of the trypsin-like serine proteinase, factor VIIa, bound to tissue factor (TF) on phospholipid membranes. We have investigated the basis for the protein substrate specificity of Xase using TF reconstituted into vesicles of phosphatidylcholine, phosphatidylserine, or pure phosphatidylcholine. We show that occupation of the active site of VIIa within Xase by a reversible inhibitor or an alternate peptidyl substrate is sufficient to exclude substrate interactions at the active site but does not alter the affinity of Xase for factor X. This is evident as classical competitive inhibition of peptidyl substrate cleavage but as classical noncompetitive inhibition of factor X activation by active site-directed ligands. This implies that the productive recognition of factor X by Xase arises from a multistep reaction requiring an initial interaction at sites on the enzyme complex distinct from the active site (exosites), followed by active site interactions and bond cleavage. Exosite interactions determine protein substrate affinity, whereas the second binding step influences the maximum catalytic rate for the reaction. We also show that competitive inhibition can be achieved by interfering with exosite binding using factor X derivatives that are expected to have limited or abrogated interactions with the active site of VIIa within Xase. Thus, substrate interactions at exosites, sites removed from the active site of VIIa within the enzyme complex, determine affinity and binding specificity in the productive recognition of factor X by the VIIa-TF complex. This may represent a prevalent strategy through which distinctive protein substrate specificities are achieved by the homologous enzymes of coagulation.  相似文献   

2.
3.
The dependence of expressiveness of microsomal mono-oxygenase induction by phenobarbital upon the amount of binding sites at cytochrome P-450 active center(s) has been studied. The experimental cholestasis is accompanied by accumulation of hydroxylated derivatives of cholesterol, which possess the detergent characteristics and destruct the substrate binding sites in P-450 molecule. The possibility has been demonstrated of phenobarbital induction under conditions when the inducer-monooxygenase primary binding and metabolic steps are not involved. It is assumed that the activation of de novo microsomal protein synthesis is effected by the molecule of phenobarbital itself and not by the products of its primary hydroxylation in the microsomes.  相似文献   

4.
Previously, gonad-stimulating substance (GSS), which acts as a gonadotropin, was purified from radial nerves of the starfish Asterina pectinifera and its structure was elucidated. Here, the interaction of GSS with receptors was examined in ovarian follicle cells, a target of GSS. In competitive experiments using radioiodinated and radioinert GSS, highly specific binding was observed in the microsomal/plasma membrane fraction of follicle cells. GSS scarcely bound in the cytosolic fraction. Scatchard plots showed the numbers of binding sites (NBS) in whole homogenate and the crude membrane to be 1.65 and 3.42 pmoles/mg protein, respectively. Dissociation constant (K (d)) values in these two preparations were almost the same at about 0.6-0.7 nM. Furthermore, it was shown that GSS stimulated adenylyl cyclase activity in follicle cell membranes in a dose-dependent manner that required GTP. Immunoblotting with specific antibodies for G-protein subunits after SDS-PAGE of the membrane preparation showed both stimulatory (Gs) and inhibitory (Gi) regulatory α-subunits for adenylyl cyclase and a β-subunit. The results strongly suggest that GSS interacts with G-protein-coupled receptors (GPCR) located in the follicle cell membrane to stimulate Gs-protein and adenylyl cyclase activity.  相似文献   

5.
Eighty different adenine-modified cAMP analogs were tested as activators of rabbit muscle protein kinase I (cAKI) in an in vitro phosphotransferase assay. All the analogs tested were able to activate completely the kinase. The affinities of the cAMP derivatives for the two types (A and B) of binding sites associated with the regulatory moiety of cAKI were determined under conditions similar to those used in the phosphotransferase assay. The potency of the cAMP analogs as cAKI activators was found to correlate with the mean affinity for sites A and B, rather than to the affinity for only one of the sites. This was true whether cAKI was assayed at low or near physiological ionic strength, whether the concentration of cAKI binding sites was 0.2 or 400 nM, and whether the kinase substrate was mixed histones or homogeneous phenylalanine-4-monooxygenase. Furthermore, site A-selective and site B-selective cAMP analogs activated cAKI synergistically. Finally, it was shown that the degree of synergism between cAMP analogs in activating cAKI correlated with their degree of site selectivity. It is concluded that cyclic nucleotides interact with both types of binding sites in the process of cAKI activation.  相似文献   

6.
Nitrous bases were shown to play an essential role in the specificity of active and adenyl nucleotide binding sites. Pyrimidine base determines the substrate specificity of rabbit skeletal muscle glycogen synthase; a crucial role in this process is ascribed to the lactam fragment of the pyrimidine cycle. The 2-oxo group was also shown to be involved in substrate binding. The adenyl nucleotide binding site interacts only with 6-aminopurine derivatives. A negative interaction was found between the enzyme active center and the adenyl nucleotide binding site.  相似文献   

7.
Phosphate-activated glutaminase (EC 3.5.1.2; l-glutamine amidohydrolase) purified from pig kidney and brain is activated by CoA and short-chain acyl-CoA derivatives. Acetyl-CoA is the most powerful activator (K(A) about 0.2mm). Acetyl-CoA is maximally effective in the absence of other activating anions such as phosphate and citrate, and at low glutamine concentrations. The negative co-operative substrate activation observed at pH7 becomes more pronounced in the presence of acetyl-CoA. Similarly to phosphate, acetyl-CoA produces at high protein concentrations a different type of activation, which is time-dependent, depends on protein concentration and is accompanied by an increase in the sedimentation coefficient. Acetyl-CoA, phosphate and citrate appear to have binding sites in common. No significant difference was observed between kidney and brain phosphate-activated glutaminase.  相似文献   

8.
Bovine procarboxypeptidase A exhibits intrinsic hydrolytic activity toward haloacyl amino acids (Behnke and Vallee, 1972), as well as toward conventional peptide and ester substrates for carboxypeptidase A (Bezzone, 1974; Uren and Neurath, 1974). The kinetics of hydrolysis of a series of such substrates by native procarboxypeptidase has now been examined in detail in order to ascertain the extent to which the binding and catalytic sites of carboxypeptidase preexist inthe zymogen. Distinct differences in the substrate binding sites of the zymogen compared with the enzyme are apparent from their respective kinetic profiles as well as from the effects of modifiers on their activities. Substrate activation with the dipeptides BzGly-L-Phe and CbzGly-L-Phe, well known for carboxypeptidase, is exhibited also by the zymogen, but the corresponding substrate inhibition by CbzGly-L-Phe and BzGly-Ophe is absent. Moreover, the substrate inhibition of carboxypeptidase by CbzGlyGly-L-Phe and BzGly-Ophe is replaced by substrate activation in the zymogen...  相似文献   

9.
The binding of three competitive glutathione analogue inhibitors (S-alkylglutathione derivatives) to glutathione S-transferase from Schistosoma japonicum, SjGST, has been investigated by isothermal titration microcalorimetry at pH 6.5 over a temperature range of 15--30 degrees C. Calorimetric measurements in various buffer systems with different ionization heats suggest that no protons are exchanged during the binding of S-alkylglutathione derivatives. Thus, at pH 6.5, the protons released during the binding of substrate may be from its thiol group. Calorimetric analyses show that S-methyl-, S-butyl-, and S-octylglutathione bind to two equal and independent sites in the dimer of SjGST. The affinity of these inhibitors to SjGST is greater as the number of methylene groups in the hydrocarbon side chain increases. In all cases studied, Delta G(0) remains invariant as a function of temperature, while Delta H(b) and Delta S(0) both decrease as the temperature increases. The binding of three S-alkylglutathione derivatives to the enzyme is enthalpically favourable at all temperatures studied. The temperature dependence of the enthalpy change yields negative heat capacity changes, which become less negative as the length of the side chain increases.  相似文献   

10.
Insulin-degrading enzyme (IDE) exists primarily as a dimer being unique among the zinc metalloproteases in that it exhibits allosteric kinetics with small synthetic peptide substrates. In addition the IDE reaction rate is increased by small peptides that bind to a distal site within the substrate binding site. We have generated mixed dimers of IDE in which one or both subunits contain mutations that affect activity. The mutation Y609F in the distal part of the substrate binding site of the active subunit blocks allosteric activation regardless of the activity of the other subunit. This effect shows that substrate or small peptide activation occurs through a cis effect. A mixed dimer composed of one wild-type subunit and the other subunit containing a mutation that neither permits substrate binding nor catalysis (H112Q) exhibits the same turnover number per active subunit as wild-type IDE. In contrast, a mixed dimer in which one subunit contains the wild-type sequence and the other contains a mutation that permits substrate binding, but not catalysis (E111F), exhibits a decrease in turnover number. This indicates a negative trans effect of substrate binding at the active site. On the other hand, activation in trans is observed with extended substrates that occupy both the active and distal sites. Comparison of the binding of an amyloid β peptide analog to wild-type IDE and to the Y609F mutant showed no difference in affinity, indicating that Y609 does not play a significant role in substrate binding at the distal site.  相似文献   

11.
The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.  相似文献   

12.
H Wang  E Gouaux 《EMBO reports》2012,13(9):861-866
LeuT serves as the model protein for understanding the relationships between structure, mechanism and pharmacology in neurotransmitter sodium symporters (NSSs). At the present time, however, there is a vigorous debate over whether there is a single high-affinity substrate site (S1) located at the original, crystallographically determined substrate site or whether there are two high-affinity substrates sites, one at the primary or S1 site and the other at a second site (S2) located at the base of the extracellular vestibule. In an effort to address the controversy over the number of high-affinity substrate sites in LeuT, one group studied the F253A mutant of LeuT and asserted that in this mutant substrate binds exclusively to the S2 site and that 1 mM clomipramine entirely ablates substrate binding to the S2 site. Here we study the binding of substrate to the F253A mutant of LeuT using ligand binding and X-ray crystallographic methods. Both experimental methods unambiguously show that substrate binds to the S1 site of the F253A mutant and that binding is retained in the presence of 1 mM clomipramine. These studies, in combination with previous work, are consistent with a mechanism for LeuT that involves a single high-affinity substrate binding site.  相似文献   

13.
Juhász T  Szeltner Z  Renner V  Polgár L 《Biochemistry》2002,41(12):4096-4106
Oligopeptidase B is a member of a novel serine peptidase family, found in Gram-negative bacteria and trypanosomes. The enzyme is involved in host cell invasion, and thus, it is an important target for drug design. Oligopeptidase B is specific for substrates with a pair of basic residues at positions P1 and P2. The sensitivity of substrates to high ionic strength suggests that the arginines interact with the carboxylate ions of the enzyme. On the basis of a three-dimensional model, two carboxyl dyads (Asp460 and Asp462 and Glu576 and Glu578) can be assigned as binding sites for arginines P1 and P2, respectively. The dyads are involved in several events: (i) substrate binding, (ii) substrate inhibition at high substrate concentrations (different inhibitory mechanisms were demonstrated with substrates bearing one and two arginine residues), (iii) enzyme activation at millimolar CaCl2 concentrations with substrates having one arginine, and (iv) interaction of Ca2+ with the dyads which simplified the complex pH dependence curves. Titration with a product-like inhibitor revealed the pK(a) of the carboxyl group that perturbed the pH-kcat/Km profiles. The OH group of Tyr452 is part of the oxyanion binding site, which stabilizes the transition state of the reaction. Its role studied with the Tyr452Phe variant indicates that (i) the catalytic contribution of the OH group depends on the substrate and (ii) the catalysis is, unusually, an entropy-driven process at physiological temperature. The NH group of the scissile peptide bond accounts for the deviation of the reaction from the Eyring plot above 25 degrees C, and for abolishing potential nonproductive binding.  相似文献   

14.
Fluorescein derivatives are known to bind to nucleotide-binding sites on transport ATPases. In this study, they have been used as ligands to nucleotide-binding sites on ATP-sensitive K+ channels in insulinoma cells. Their effect on channel activity has been studied using 86Rb+ efflux and patch-clamp techniques. Fluorescein derivatives have two opposite effects. First, like ATP, they can inhibit active ATP-sensitive K+ channels. Second, they are able to reactivate ATP-sensitive K+ channels subjected to inactivation or "run-down" in the absence of cytoplasmic ATP. Therefore reactivation of the inactivated ATP-sensitive K+ channel clearly does not require channel phosphorylation as is commonly believed. The results indicate the existence of two binding sites for nucleotides, one activator site and one inhibitor site. Irreversible binding at either the inhibitor or the activator site on the channel was obtained with eosin-5-maleimide, resulting in irreversible inhibition or activation of the ATP-sensitive K+ channel respectively. The irreversibly activated channel could still be inhibited by 2 mM ATP. After activation by fluorescein derivatives, ATP-sensitive K+ channels become resistant to the classical blocker of this channel, the sulfonylurea glibenclamide. Negative allosteric interactions between fluorescein/nucleotide receptors and sulfonylurea-binding sites were suggested by results obtained in [3H]glibenclamide-binding experiments.  相似文献   

15.
CK2alpha is the catalytic subunit of protein kinase CK2 and a member of the CMGC family of eukaryotic protein kinases like the cyclin-dependent kinases, the MAP kinases and glycogen-synthase kinase 3. We present here a 1.6 A resolution crystal structure of a fully active C-terminal deletion mutant of human CK2alpha liganded by two sulfate ions, and we compare this structure systematically with representative structures of related CMGC kinases. The two sulfate anions occupy binding pockets at the activation segment and provide the structural basis of the acidic consensus sequence S/T-D/E-X-D/E that governs substrate recognition by CK2. The anion binding sites are conserved among those CMGC kinases. In most cases they are neutralized by phosphorylation of a neighbouring threonine or tyrosine side-chain, which triggers conformational changes for regulatory purposes. CK2alpha, however, lacks both phosphorylation sites at the activation segment and structural plasticity. Here the anion binding sites are functionally changed from regulation to substrate recognition. These findings underline the exceptional role of CK2alpha as a constitutively active enzyme within a family of strictly controlled protein kinases.  相似文献   

16.
E A Sergienko  F Jordan 《Biochemistry》2001,40(25):7382-7403
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.  相似文献   

17.
It has generally been concluded that two divalent cations are required for enolase activity, even though the enzyme is a homodimer that specifically binds four metal ions in the presence of substrate. This paper reports a reinvestigation of the stoichiometry of enolase activation. Specific ion electrode measurements of Mg2+ binding in the presence and absence of substrate are compared with stopped-flow measurements of the velocity of 2-phosphoglycerate dehydration. It is concluded that the enzyme is inactive when only two metal-binding sites are filled and that four sites must be populated with Mg2+ for full activity. An ordered binding mechanism is proposed that quantitatively predicts the activation of enolase by the four Mg2+ ions from their measured dissociation constants and the Michaelis constant for the dehydration reaction. To explain the loss of enzymatic activity at still higher metal concentrations, the binding of additional, inhibitory Mg2+ ions is postulated.  相似文献   

18.
The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivatives with the activator site and with the catalytic site of the enzyme has been investigated. Binding of cGMP to the activator site is strongly reduced (more than 80-fold) if cGMP is no longer able to form a hydrogen bond at N2H2 or O2'H. Modifications at N7, C8, O3' and O5' induce only a small reduction of binding affinity. A cyclic phosphate structure, as well as a negatively charged oxygen atom at phosphorus, are essential to obtain activation of the enzyme. Substitution of the axial exocyclic oxygen atom by sulphur is tolerated; modification of the equatorial oxygen atom reduces the binding activity of cGMP to the activator site by 90-fold. Binding of cGMP to the catalytic site is strongly reduced if cGMP is modified at N1H, C6O, C8 and O3', while modifications at N2H2, N3, N7, O2'H, and O5' have minor effects. Both exocyclic oxygen atoms are important to obtain binding of cGMP to the catalytic site. The results indicate that activation of the enzyme by cGMP and hydrolysis of cGMP occur at different sites of the enzyme. cGMP is recognized at these sites by different types of molecular interaction between cGMP and the protein. cGMP derivatives at concentrations which saturate the activator site do not induce the same degree of activation of the enzyme (activation 2.3-6.6-fold). The binding affinities of the analogues for the activator site and their maximal activation are not correlated. Our results suggest that the enzyme is activated because cGMP bound to the activator site stabilizes a state of the enzyme which has a higher affinity for cGMP at the catalytic site.  相似文献   

19.
We have analyzed interactions between the mammalian TATA factor (TFIID) and derivatives of the yeast activator GAL4. The interaction of the TATA factor on the adenovirus E4 promoter with GAL4 binding sites adjacent to the TATA site was qualitatively altered in response to GAL4 binding. Alterations in the TFIID interactions were observed with two GAL4 derivatives that stimulated hybrid E4 promoter activity in vitro but not with a third derivative that bound to DNA but showed no activation. These results indicate that TFIID is a direct target for a GAL4 activation domain and suggest a simple general model for the activation mechanism.  相似文献   

20.
This study investigates the dynamics of zymogen activation when both extrinsic tenase and prothrombinase are assembled on an appropriate membrane. Although the activation of prothrombin by surface-localized prothrombinase is clearly mediated by flow-induced dilutional effects, we find that when factor X is activated in isolation by surface-localized extrinsic tenase, it exhibits characteristics of diffusion-mediated activation in which diffusion of substrate to the catalytically active region is rate-limiting. When prothrombin and factor X are activated coincident with each other, competition for available membrane binding sites masks the diffusion-limiting effects of factor X activation. To verify the role of membrane binding in the activation of factor X by extrinsic tenase under flow conditions, we demonstrate that bovine lactadherin competes for both factor X and Xa binding sites, limiting factor X activation and forcing the release of bound factor Xa from the membrane at a venous shear rate (100 s(-1)). Finally, we present steady-state models of prothrombin and factor X activation under flow showing that zymogen and enzyme membrane binding events further regulate the coagulation process in an open system representative of the vasculature geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号