首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Flash photolysis experiments with electron paramagnetic resonance detection were carried out between 10 K and 300 K on samples of green plant and algal species. Chemically induced dynamic electron polarization was evident for the signals observed in the g = 2.0 region for 100 KHz modulated detection and also for a system with no magnetic field modulation. The light reversible signals decaying in about 1 ms at low temperatures are interpreted as arising from photosystem I of the green plant and algal samples. Evidence is presented which indicates that the origin of the electron spin polarization is the well established radical-pair mechanism.  相似文献   

4.
A. Telfer  J. Barber  P. Heathcote  M.C.W. Evans 《BBA》1978,504(1):153-164
1. Photosystem I particles enriched in P-700 prepared by Triton X-100 treatment of chloroplasts show a light-induced increase in fluorescence yield of more than 100% in the presence of dithionite but not in its absence.2. Steady state light maintains the P-700, of these particles, in the oxidised state when ascorbate is present but in the presence of dithionite only a transient oxidation occurs.3. EPR data show that, in these particles, the primary electron acceptor (X) is maintained in the reduced state by light at room temperature only when the dithionite is also present. In contrast, the secondary electron acceptors are reduced in the dark by dithionite.4. Fluorescence emission and excitation spectra and fluorescence lifetime measurements for the constant and variable fluorescence indicate a heterogeneity of the chlorophyll in these particles.5. It is concluded that the variable fluorescence comes from those chlorophylls which can transfer their energy to the reaction centre and that the states PX and P+X are more effective quenchers of chlorophyll fluorescence than PX?, where P is P-700.  相似文献   

5.
The generation, occurrence and action of singlet oxygen in plant tissue is reviewed. Particular emphasis is placed upon its formation from triplet sensitizers and its reactivity with molecules of biological importance such as lipids and amino acids. The possibility of singlet oxygen generation in chloroplasts is discussed in relation to potential quenching systems such as carotenoid pigments, ascorbate and α-tocopherol. The problems associated with carotenoid diminution and some stress and herbicide treatment conditions are related to the possibility of damage by singlet oxygen. The action of a number of secondary plant substances, including quinones, furanocoumarins, polyacetylenes and thiophenes, as plant defence agents is discussed in relation to the photodynamic generation of singlet oxygen.  相似文献   

6.
Photosystem II in green plant chloroplasts displays heterogeneity both in the composition of its light-harvesting antenna and in the ability to reduce the plastoquinone pool. These two features are discussed in terms of chloroplast development and in view of a proposed photosystem II repair cycle.  相似文献   

7.
A comparative study was made of the effects of high concentrations of NaCl, KCl and MgCl2 on two electron transport reactions of thylakoids isolated from a mesophyte, Pisum sativum and a halophyte, Aster tripolium . The rate of photosystem I mediated electron transport from reduced N, N, N', N'-tetramethyl- p -phenylenediamine (TMPD) to methyl viologen was determined polarographically, and photosystem II mediated electron flow from water to 2,6-dichlorophenolindophenol (DCPIP) was monitored spectrophotometrically. The response of photosystem II to increasing in vitro salt concentrations was similar for thylakoids isolated from both A. tripolium and P. sativum , but differences in the response of photosystem I to salinity changes were observed for the two species. Increasing NaCl, KCl and MgCl2 concentrations produced similar patterns of response of photosystem I activity in P. sativum thylakoids, whilst for A. tripolium KCl induced a completely different response pattern compared to NaCl and MgCl2. The salinity of the culture medium in which A. tripolium was grown also had an effect on both the absolute in vitro activities of photosystems I and II and their response to changes in salt concentration of the reaction media.  相似文献   

8.
The functioning of alternative routes of photosynthetic electron transport was analyzed from the kinetics of dark reduction of P700+ , an oxidized primary donor of PSI, in barley (Hordeum vulgare L.) leaves irradiated by white light of various intensities. Redox changes of P700 were monitored as absorbance changes at 830 nm using PAM 101 specialized device. Irradiation of dark-adapted leaves caused a gradual P700+ accumulation, and the steady-state level of oxidized P700 increased with intensity of actinic light. The kinetics of P700+ dark reduction after a pulse of strong actinic light, assayed from the absorbance changes at 830 nm, was fitted by a single exponential term with a halftime of 10–12 ms. Two slower components were observed in the kinetics of P700+ dark reduction after leaf irradiation by attenuated actinic light. The contribution of slow components to P700+ reduction increased with the decrease in actinic light intensity. Two slow components characterized by halftimes similar to those observed after leaf irradiation by weak white light were found in the kinetics of dark reduction of P700+ oxidized in leaves with far-red light specifically absorbed by PSI. The treatment of leaves with methyl viologen, an artificial PSI electron acceptor, significantly accelerated the accumulation of P700+ under light. At the same time, the presence of methyl viologen, which inhibits ferredoxin-dependent electron transport around PSI, did not affect three components of the kinetics of P700+ dark reduction obtained after irradiations with various actinic light intensities. It was concluded that some part of PSI reaction centers was not reduced by electron transfer from PSII under weak or moderate intensities of actinic light. In this population of PSI centers, P700+ was reduced via alternative electron transport routes. Insensitivity of the kinetics of P700+ dark reduction to methyl viologen evidences that the input of electrons to PSI from the reductants (NADPH or NADH) localized in the chloroplast stroma was effective under those light conditions.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 5–11.Original Russian Text Copyright © 2005 by Bukhov, Egorova.  相似文献   

9.
EPR measurements on inside-out thylakoids revealed that salt-washing, known to inhibit oxygen evolution and release a 23 and a 16 kDa protein, induced a Signal IIf and decreased the EPR signal from state S2. Readdition of the released 23 kDa protein restored the oxygen evolution and decreased the Signal IIf, but did not relieve the decrease in the state S2 signal. It is suggested that salt-washing inhibits the electron transfer from the oxygen-evolving site to Z, the physiological donor to P680. In inhibited photosystem II units lacking Signal IIf, Z+ is rapidly reduced, possibly by a modified S-cycle unable to evolve oxygen.  相似文献   

10.
J.S.C. Wessels  M.T. Borchert 《BBA》1978,503(1):78-93
In addition to the major chlorophyll · protein complexes I and II, two minor chlorophyll proteins have been observed in sodium dodecyl sulfate (SDS)-polyacrylamide gels of spinach chloroplast membranes. These minor pigmented zones appeared to be derived from the light-harvesting chlorophyll ab · protein and from the reaction centre complex of Photosystem II.Data are presented on the polypeptide profiles of purified digitonin-subchloroplast particles, with special regard to the effect of solubilization temperature and extraction of lipids. The results are compared with the SDS-polypeptide pattern of spinach thylakoids obtained under exactly the same conditions with respect to electrophoresis technique, solubilization method and presence of lipid. In addition, the effects of temperature and lipid extraction on the distinct chlorophyll · protein complexes appearing in SDS gel electrophoretograms of chloroplast membranes were studied by slicing the chlorophyll-containing regions and subjecting them to a second run with or without heating or extraction with acetone. By supplementing these data with an examination of the polypeptide composition of cytochrome f and coupling factor, it has been possible to identify most of the major chloroplast membrane polypeptides.  相似文献   

11.
Proteins of chloroplast subfragments enriched in Photosystem I and Photosystem II electron flow activity have been analyzed by two-dimensional polyacrylamide gel electrophoresis. In the first dimension, polyacrylamide gel isoelectric focusing (pH 5–7) was used in the presence of Triton X-100, followed at right angle by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Characteristic fingerprints were obtained for the Photosystem I and II fractions and a correlation between the major proteins separated by isoelectric focusing and the major polypeptides separated by undimensional SDS electrophoresis was established. Two dominant spots of 68 000 and 60 000 daltons appeared in the two-dimensional patterns of Photosystem I fractions pI values about 5.6; two spots with molecular weights of 33 000 and 23 000 were characteristics for Photosystem II fractions pI values about 5.3 and 6.3). Photosystem I fractions were furthermore characteristics by a series of spots in the 44 000–33 000 range pI values from about 5.9 to 6.8). The two-dimensional system revealed that (a) several SDS-polypeptides have multiple forms differing in charge only, (b) some proteins separated by isoelectric focusing are resolved in the second dimensional into polypeptides of different size. The two-dimensional method combining Triton X-100 isoelectric focusing' and SDS electrophoresis provides a higher degree of resolution than either of the unidimensional methods thus allowing a detailed analysis of chloroplast membrane proteins.  相似文献   

12.
Chloroplasts developed at cold-hardening (5°C) and non-hardening temperatures (20°C) were compared with respect to the stability of photosynthetic electron transport activities, the capacity to produce and maintain a H+ gradient and the capacity fat photophosphorylation as a function of resuspension in the presence or absence of osmoticum. The results for electron transport indicate that whole chain, photosystem I and pfaotosystem II activities in non-hardened chloroplast thyalkoids were unaffected by resuspension in the presence of high or low osmoticum. In contrast, the same electron transport activities in cold-hardened chloroplast thylakoids exhibited a 3- to 4-fold decrease in activity when resuspended in the presence of low osmoticum. Impairment of electron transport through photosystem II of cold-hardened thylakoids resuspended in the presence of low osmoticum was supported by room temperature fluorescence induction kinetics. Since the presence of Mn2+ partially overcame this inhibition, it is concluded that this osmotically-induced inhibition of PSII activity in cold-hardened chloroplast thylakoids may, in part, be due to damage to the H2O-splitting side of photosystem II. Both the initial rate and the maximum capacity for cyclic photophosphorylation were significantly inhibited in cold-hardened as compared to non-hardened thylakoids upon resuspension in the presence of low concentrations of osmoticum. This was correlated with an inability of the cold-hardened chloroplast thylakoids to maintain a significant transrnembrane H+ gradient. The results indicate that cold-hardened thylakoid membranes required an osmotic concentration (0.8 M) twice as high as non-hardened thylakoids (0.4 M) to produce the same initial rate of H+ uptake. In addition, the capacity to produce a proton gradient in cold-hardened thylakoids was less stable than that in non-hardened thylakoids regardless of the osmotic concentration tested. It is concluded that development of rye thylakoid membranes at low temperature results in a differential sensitivity to low osmoticum and thus extreme caution should be exercised when comparing the structure and function of isolated thylakoids developed under contrasting thermal regimes.  相似文献   

13.
The intensity of light emission was used to determine the ground-to-excited state free-energy difference of Photosystem II in the alga Scenedesmus quadricauda. Prompt fluorescence measurements give the driving force of that photosystem under illumination while delayed fluorescence indicates the free energy stored in reaction products. Comparison of the light-on and light-off cases suggested that the immediate products were 0.13 eV lower in free energy than the excited state. In the physiological light range, Photosystem II can store 1.0 eV, or about 60% of that needed for photosynthesis, and still shows a ΔG of 0.7 eV after 3 h.  相似文献   

14.
Usisng intact leaves, the extent of the decrease in chlorophyll a fluorescenece caused by the addition of continuous 710 nm light superimposed on modulated (20 Hz) 550 nm light was used to determine the distribution of this absorbed light between photosystems I () and II (). The Fo and Fm levels, which defined the total variable fluorescenece, were taken as equal to those obtained with excess 710 nm light and with saturating blue-green light, respectively.An analogous procedure was used with a photoacoustic detector, saturating white light defining a base line for oxygen yield, the levels with an without 710 nm light being used to define and respectively.The two methods gave similar values for the distribution of light between the two photosystems for the experimental conditions used, averaging 0.55 for a range of Triticum genotypes and Brachypodium sylvaticum grown in high or low light.  相似文献   

15.
16.
Extraction of PS II particles with 1 M CaCl2 caused complete disappearance of the light-induced signal of the possible Kok S2 state of the water-splitting complex and total loss of the O2, evolving activity, concomitant with perfect removal of the 17-, 23- and 34-kDa proteins from the particles. The recovery of the multiline signal in the CaCl2-treated PS II was performed by reinserting the 34-kDa protein, when CI? was present in the solution for the EPR measurement. However, in the absence of Cl?, besides the 34-kDa protein, the 17- and 23-kDa proteins were required for the recovery of the signal. These results are compared with the results on the recovery of the O2, evolution in the reconstituted PS II to examine the role of these three proteins on the water splitting.  相似文献   

17.
A slow water stress over several days was imposed on tobacco plants (Nicotiana tabacum L. var. Xanthi) by withholding water from the soil. Photosynthesis was measured in leaves from those water-stressed plants by the photoacoustic method. Slow drought induced marked changes in the photoacoustic signals, which were largely similar to those observed previously in leaves subjected to rapid desiccation in air (over 3–4 h), reflecting two simultaneous changes: 1) Modification of the heat and oxygen diffusion characteristics of the leaves due to changes in their anatomical structure [shown by the change in the slope of the plot of the oxygen (AOX) to photothermal signal (APT) ratio vs the square root of the modulation frequency]; 2) Inhibition of gross photosynthesis measured by the extrapolation of the AOX/APT ratio to zero frequency. However, in contrast to rapid water stress in detached leaves, where it was shown that mainly the oxidizing side of photosystem II (PS II) was damaged, we found a slower and more complex phenomenology having largely biphasic kinetics. During the first 6 days, there was a strong reduction in the photochemical energy storage, but the inhibition of oxygen evolution was relatively mild. The Emerson enhancement in state 1 dropped considerably, indicating lowering of the apparent absorption cross-section of PS II. Fluorescence measurements suggest that PS II reaction center itseIf may be the primary site of the damage. PS I activity, judged by cytochrome f photooxidation, remained largely intact. The subsequent days were associated with a further spectacular decrease in the oxygen evolution quantum yield with both photosystems damaged. The photochemical energy storage continued to decrease further. The Emerson enhancement ratio of the remaining activities in both State 1 and 2 showed a marked increase, indicating the reestablishment of a strong imbalance in the distribution of excitation energy within the photochemical apparatus in favor of PS II. All the photoacoustic changes observed in response to drought were completely reversible within 2–3 days upon rewatering of the soil.  相似文献   

18.
In Cryptomonas rufescens (Cryptophyceae), phycoerythrin located in the thylakoid lumen is the major accessory pigment. Oxygen action spectra prove phycoerythrin to be efficient in trapping light energy.The fluorescence excitation spectra at ?196°C obtained by the method of Butler and Kitajima (Butler, W.L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85) indicate that like in Rhodophycease, chlorophyll a is the exclusive light-harvesting pigment for Photosystem I.For Photosystem II we can observe two types of antennae: (1) a light-harvesting chlorophyll complex connected to Photosystem II reaction centers, which transfers excitation energy to Photosystem I reaction centers when all the Photosystem II traps are closed. (2) A light-harvesting phycoerythrin complex, which transfers excitation energy exclusively to the Photosystem II reaction complexes responsible for fluorescence at 690 nm.We conclude that in Cryptophyceae, phycoerythrin is an efficient light-harvesting pigment, organized as an antenna connected to Photosystem II centers, antenna situated in the lumen of the thylakoid. However, we cannot afford to exclude that a few parts of phycobilin pigments could be connected to inactive chlorophylls fluorescing at 690 nm.  相似文献   

19.
Shmuel Malkin  Jim Barber 《BBA》1978,502(3):524-541
1. Using a phosphoroscope, delayed luminescence and prompt chlorophyll fluorescence from isolated chloroplasts have been compared during the induction period.2. Two distinct decay components of delayed luminescence were measured a “fast” component (from ≈1 ms to ≈6 ms) and a “slow” component (at ≈6 ms).3. The fast luminescence component often did not correlate with the fluorescence changes while the slow component significantly changed its intensity during the induction period in a manner which could usually be linearly correlated with variable portion of the fluorescence yield change.4. This correlation was evident after preillumination with far-red light or after allowing a considerable time for dark relaxation.5. The close relationship between the slow luminescence component and variable fluorescence yield was observed with a large range of light intensities and also in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea which considerably changes the fluorescence induction kinetics.6. Valinomycin and other antibiotics reduced the amplitude of the 6 ms (slow) luminescence without affecting its relation with the fluorescence induction suggesting possibly that a constant electrical gradient exist in the dark or formed very rapidly in the light, which effects the emission intensity.7. Changes in salt levels of suspending media equally affected the amplitude of both delayed luminescence and variable fluorescence under conditions when the reduction of Q is maximal and constant.8. The results are discussed in terms of several models. It is concluded that the model of independent Photosystem II units together with photosynthetic back reaction concept is incompatible with the data. Other alternative models (the “lake” model and photosynthetic back reaction; recombination of charges in the antenna chlorophyll; the “W” hypothesis) were in closer agreement with the results.  相似文献   

20.
The properties of Photosystem II electron donation were investigated by EPR spectrometry at cryogenic temperatures. Using preparations from mutants which lacked Photosystem I, the main electron donor through the Photosystem II reaction centre to the quinone-iron acceptor was shown to be the component termed Signal II. A radical of 10 G line width observed as an electron donor at cryogenic temperatures under some conditions probably arises through modification of the normal pathway of electron donation. High-potential cytochrome b-559 was not observed on the main pathway of electron donation. Two types of PS II centres with identical EPR components but different electron-transport kinetics were identified, together with anomalies between preparations in the amount of Signal II compared to the quinone-iron acceptor. Results of experiments using cells from mutants of Scenedesmus obliquus confirm the involvement of the Signal II component, manganese and high-potential cytochrome b-559 in the physiological process leading to oxygen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号