首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periods of apnea are relatively common in newborns but rare in older infants. Postnatal changes in the response of the central neural respiratory circuits to afferent inputs may have a role in the age-related incidence of apnea. Therefore we determined the central neural apneic threshold to CO2 and superior laryngeal nerve (SLN) stimulation in halothane-anesthetized newborn (4- to 7-day-old) and older (45- to 56-day-old) lambs. The animals were vagotomized, paralyzed, and mechanically ventilated with hyperoxic gas. Phrenic nerve activity served as a monitor of central respiratory output. The CO2 and SLN apneic thresholds were defined as the arterial PCO2 when phrenic activity began after hyperventilation, and the quantity of current applied to the SLN that abolished phrenic activity, respectively. At equivalent concentrations of halothane, newborn lambs had higher CO2 apneic thresholds (P less than 0.05) and lower SLN apneic thresholds (P less than 0.05) than did older lambs. Increasing concentrations of halothane decreased (P less than 0.05) the SLN apneic threshold and increased (P less than 0.05) the CO2 apneic threshold. Equal incremental changes in halothane concentration induced similar changes in the apneic thresholds of both ages of lambs. The data suggest that with maturation, the central neural respiratory circuits become more responsive to CO2 and less responsive to SLN afferents. Halothane alters central neural responsiveness to these inputs in both ages similarly.  相似文献   

2.
The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.  相似文献   

3.
The heart rate and respiratory patterns in hypoxia are not well documented in unanaesthetized intact newborn animals. We studied heart rate and respiratory patterns during quiet sleep in 17% inspired O2 in 31 unanaesthetized newborns of five species: lamb, piglet, puppy, kitten, and rabbit. There was no significant change in mean heart rate and respiratory rate with hypoxia for any species. Brief apneas greater than 5 s were frequent (5-8/h), both in 21 and 17% O2 only in lambs and puppies. No sustained periodic breathing was induced by hypoxia. Thus, mild hypoxia has little steady-state effect on heart rate and respiratory rate and pattern in these unanaesthetized newborns. These findings are compatible with depressed chemoreceptor threshold, but indicate a remarkably mature respiratory pattern in full-term newborns of these species.  相似文献   

4.
We tested the hypotheses that active upper airway closure during induced central apneas in nonsedated lambs 1). is complete and occurs at the laryngeal level and 2). is not due to stimulation of the superior laryngeal nerves (SLN). Five newborn lambs were surgically instrumented to record thyroarytenoid (TA) muscle (glottal constrictor) electromyographic (EMG) activity with supra- and subglottal pressures. Hypocapnic and nonhypocapnic central apneas were induced before and after SLN sectioning in the five lambs. A total of 174 apneas were induced, 116 before and 58 after sectioning of the internal branch of the SLN (iSLN). Continuous TA EMG activity was observed in 88% of apneas before iSLN section and in 87% of apneas after iSLN section. A transglottal pressure different from zero was observed in all apneas with TA EMG activity, with a mean subglottal pressure of 4.3 +/- 0.8 cmH2O before and 4.7 +/- 0.7 cmH2O after iSLN section. Supraglottal pressure was consistently atmospheric. Sectioning of both iSLNs had no effects on the results. We conclude that upper airway closure during induced central apneas in lambs is active, complete, and occurs at the glottal level only. Consequently, a positive subglottal pressure is maintained throughout the apnea. Finally, this complete active glottal closure is independent from laryngeal afferent innervation.  相似文献   

5.
This study examines the effect of progressive isocapnic CO hypoxemia on respiratory afterdischarge and the phrenic neurogram response to supramaximal carotid sinus nerve (CSN) stimulation. Twelve anesthetized, vagotomized, peripherally chemodenervated, ventilated cats with blood pressure controlled were studied. During isocapnic hypoxemia, the amplitude of the phrenic neurogram was progressively depressed. In contrast, the increase in peak phrenic amplitude produced by CSN stimulation was unchanged, suggesting that the central respiratory response to CSN stimulation is unaffected by progressive hypoxemia. The time constant of respiratory afterdischarge (tau) was calculated from best-fit plots of phrenic amplitude vs. time after cessation of CSN stimulation. Under control conditions the value of tau was 57.7 +/- 3 (SE) s (n = 12). During progressive isocapnic hypoxemia, tau decreased as a linear function of arterial O2 content (CaO2) such that a 40% reduction of CaO2 resulted in a 48% reduction in tau. This reduction of respiratory afterdischarge may contribute to the genesis of periodic breathing during hypoxia.  相似文献   

6.
Stimulation of the innate immune system is potentially very important in neonates who have an immature adaptive immune system and vaccination cannot be used to reduce the risk of infection. CpG oligodeoxynucleotide (ODN) can stimulate innate immune responses in newborn chickens and mice, but similar studies are lacking in other mammalian species. We have shown previously that CpG ODN can both stimulate an acute-phase immune response and induce the antiviral effector molecule, 2'5'-A synthetase, in adult sheep. Therefore, the immunostimulatory activity of A class and B class CpG ODN was evaluated in newborn lambs, and the capacity of CpG ODN-induced responses to reduce viral shedding was evaluated following aerosol challenge with the respiratory pathogen, bovine herpesvirus-1 (BHV-1). In vitro CpG ODN stimulation of peripheral blood mononuclear cells (PBMC) isolated from newborn lambs (3-5 days old) and adult sheep induced equivalent CpG-specific proliferative responses and interferon-alpha (IFN-alpha) secretion. CpG ODN-induced IFN-alpha secretion by neonatal PBMCs was, however, significantly (p < 0.01) enhanced 6 days after subcutaneous (s.c.) injection of 100 microg/kg CpG ODN 2007. Newborn lambs injected s.c. with B class CpG ODN 2007 or the inverted GpC control ODN formulated in 30% Emulsigen (MVP Laboratories, Ralston, NE) displayed CpG ODN-specific increases in body temperature (p < 0.0001), serum 2'5'-A synthetase activity (p = 0.0015), and serum haptoglobin (p = 0.07). CpG ODN-treated lambs also displayed a transient reduction in viral shedding on day 2 postinfection (p < 0.05), which correlated (p < 0.03) with serum 2'5'-A synthetase levels on the day of viral challenge. These observations confirmed that CpG ODNs effectively activate innate immune responses in newborn lambs and CpG ODN-induced antiviral responses correlated with a reduction in viral shedding.  相似文献   

7.
Exposing newborn rats to postnatal hyperoxia (60% O2) for 1-4 wk attenuates the ventilatory and phrenic nerve responses to acute hypoxia in adult rats. The goal of this research was to increase our understanding of the carotid chemoreceptor afferent neural input in this depressed response with different durations of postnatal hyperoxic exposure. Rats were exposed from a few days before birth to 1, 2, or 4 wk of 60% O2 and studied after 3-5 mo in normoxia. The rats were anesthetized with urethane. Whole carotid sinus nerve (CSN) responses to NaCN (40 microg/kg iv), 10 s of asphyxia and acute isocapnic hypoxia (arterial Po2 45 Torr) were determined. Mean CSN responses to stimuli after postnatal hyperoxia were reduced compared with controls. Responses in rats exposed to 1 wk of postnatal hyperoxia were less affected than those exposed to 2 and 4 wk of hyperoxia, which were equivalent to each other. These studies illustrate the importance of normoxia during the first 2 wk of life in development of carotid chemoreceptor afferent function.  相似文献   

8.
To study the postnatal maturation of vagal control of airway muscle tone, we determined the effects of vagotomy and supramaximal vagal stimulation on the resistance of the respiratory system in eight newborn and seven 6-wk-old piglets. Because the lung periphery has distinctive responses to cholinergic agonists and a lower density of vagal fibers and cholinergic receptors than the central airways, we partitioned the respiratory resistance of the piglets between central airways (Rc) and peripheral airways and lung tissue (Rp) with bronchial catheters inserted in a retrograde manner. The piglets were anesthetized with alpha-chloralose and ventilated with positive airway pressure. Vagotomy did not change Rc or Rp in either the newborn or the 6-wk-old piglets. Vagal stimulation, on the other hand, increased both Rc (median increase 53% in the newborn and 72% in the 6-wk-old piglets) and Rp (54 and 42%, respectively). At all states of vagal tone, Rp increased as the lungs were inflated, suggesting a large contribution of tissue viscoelasticity to this resistance. Our results demonstrate that vagal bronchomotor tone is absent during mechanical ventilation with positive pressure in the developing piglet. However, vagal innervation of both central airways and tissue contractile elements is functionally competent at the time of birth in this species.  相似文献   

9.
Stimulation of laryngeal afferent fibers evokes a profound reflex inhibition of central respiratory drive. The interaction of this airway reflex with chemoreceptive ventilatory control mechanisms is poorly understood. The present study was undertaken to determine whether there is significant interaction between the effects of central chemoreceptor and laryngeal afferent stimulation on central inspiratory activity and, if so, to also determine the nature of the interaction. The effect of electrical stimulation of the superior laryngeal nerve (SLN) on the timing and intensity of central inspiratory activity was determined from the rectified and filtered phrenic neurogram in 10 dogs. Each dogs was decerebrated, artificially ventilated, vagotomized, and had the carotid bodies denervated. In each case, stimulation of the right SLN at 3 and 10 Hz caused a frequency-dependent slowing or arrest of central inspiratory activity. Increases in arterial PCO2 (PaCO2) attenuated the absolute level of inhibition of central inspiratory activity recorded during both SLN stimulation and control periods. Tp clarify the nature of the interaction between chemoreceptor and laryngeal afferent stimulation, the relationship between PaCO2 and central inspiratory activity was investigated during stimulation of the SLN at 0, 3, and 10 Hz. Control central inspiratory activity increased as a sigmoidal function of PaCO2. This sigmoidal relationship was greatly depressed during SLN stimulation but did not appear to be shifted along the PaCO2 axis. The results of this study therefore suggest that the interaction between central chemoreceptor and laryngeal afferent stimulation is multiplicative: the inhibition of the central inspiratory activity is mediated by an attenuation and not a resetting of central chemoreflexes.  相似文献   

10.
The effect of PGF2 alpha has been evaluated in 11 unanaesthetized unrestrained piglets and in 3 anaesthetized piglets (2-3 days old) using a barometric-plethysmographic technique. PGF2 alpha (mg 0.25/pig) was administered as aerosol for 5 min. In 3 of the unanaesthetized newborn pigs the effect of PGF2 alpha aerosol has been evaluated after indomethacin (mg 1/Kg i.v.). The vagal dependent activity of the prostaglandin was also evaluated after atropine (mg 0.08/Kg i.m.). Our results show that PGF2 alpha in newborn pigs causes hypoventilation due to a decrease in respiratory rate and to a lengthening in TE. The changes in TE are due to an increase in the incidence and duration of apneic events characterizing the respiratory activity at birth. After indomethacin PGF2 alpha does not change the breathing pattern. Atropine only partially reduces the effects of PGF2 alpha while, after anaesthesia, prostaglandin does not change the breathing pattern. Consequently our results show that PGF2 alpha in newborn animals similar to other prostaglandins acts as a depressant of respiratory activity.  相似文献   

11.
We examined abdominal muscle minute electromyographic (EMG) activity (peak moving time average EMG x respiratory rate) during eupnea, hyperoxic hypercapnia (8% CO2-40% O2-balance N2), and hypoxia (13% O2) in 12 anesthetized (0.5% halothane) newborn piglets. In addition, we assessed the role of vagal afferent pathways in the abdominal muscles' response to ventilatory chemostimulation by examining abdominal EMG activity (EMGab) before and after bilateral cervical vagotomy in five animals. Phasic expiratory EMGab was observed in 11 of 12 piglets during eupnea. Hypercapnia was associated with a sustained augmentation of minute EMGab (444 +/- 208% control). In contrast, hypoxia consistently augmented (1 min, 193 +/- 33% control) then diminished (5 min, 126 +/- 39% control) minute EMGab. Vagotomy resulted in a decline in peak moving time average EMGab by approximately one-half (48 +/- 18% control); the abdominal muscles' response to ventilatory chemostimulation, however, was qualitatively unchanged. We conclude that 1) expiration during eupnea in anesthetized newborn piglets is associated with phasic EMGab; 2) both hypercapnia and hypoxia augment minute EMGab; however, only hypercapnia is associated with sustained augmentation; and 3) although vagal afferents have a role in modulating the base-line level of EMGab, other extravagal mechanisms appear to determine the pattern of EMGab in response to ventilatory chemostimulation.  相似文献   

12.
The present study was designed to investigate the effect of stimulus duration and chemosensory input on the recovery of central respiratory activity from apnea induced by superior laryngeal nerve (SLN) electrical stimulation. Newborn piglets less than 8 days of age were anesthetized, paralyzed, and mechanically ventilated at differing levels of end-tidal CO2 partial pressure (PCO2). The vagi were cut bilaterally in the neck. Integrated phrenic nerve activity was used as the index of respiratory activity. SLN stimulation caused apnea that persisted after stimulus cessation. The length of apnea following stimulus cessation was directly related to stimulus duration and inversely related to end-tidal PCO2. After apnea, respiratory activity returned gradually to the initial control level. The recovery pattern was well described by a linear regression function using the natural logarithm of time as the independent variable. Prolonging stimulus duration progressively inhibited the amount of initial respiratory activity following apnea. On the other hand, the rate of respiratory recovery was independent of stimulus duration and, except at low end-tidal PCO2 following long (30 s) stimuli, was independent of the end-tidal PCO2 level. These results demonstrate that a long-acting central mechanism regulates recovery from apnea induced by SLN stimulation.  相似文献   

13.
To examine the effects of intrauterine growth restriction and acute severe oxygen deprivation on renal blood flow (RBF), renovascular resistance (RVR), and renal excretory functions in newborns, studies were conducted on 1-day-old anesthetized piglets divided into groups of normal weight (NW, n = 14) and intrauterine growth-restricted (IUGR, n = 14) animals. Physiological parameters, RBF, RVR, and urinary flow, were similar in NW and IUGR piglets, but glomerular filtration rate (GFR) and filtration fraction were significantly less in IUGR animals (P < 0.05). An induced 1-h severe hypoxia (arterial PO(2) = 19 +/- 4 mmHg) resulted in, for both groups, a pronounced metabolic acidosis, strongly reduced RBF, and increased fractional sodium excretion (FSE; P < 0.05) with a less-pronounced increase of RVR and arterial catecolamines in IUGR piglets. Of significance was a smaller decrease in RBF for IUGR piglets (P < 0.05). Early recovery showed a transient period of diuresis with increased osmotic clearance and elevated FSE in both groups (P < 0.05). However, GFR and renal O(2) delivery remained reduced in NW piglets (P < 0.05). We conclude that, in newborn IUGR piglets, RBF is maintained, although GFR is compromised. Severe hypoxemia induces similar alterations of renal excretion in newborn piglets. However, the less-pronounced RBF reduction during hypoxemia indicates an improved adaptation of newborn IUGR piglets on periods of severely disturbed oxygenation. Furthermore, newborn piglets reestablish the ability for urine concentration and adequate sodium reabsorption early after reoxygenation so that a sustained acute renal failure was prevented.  相似文献   

14.
Resting respiratory parameters and respiratory responses to acute changes in end-tidal O2 and CO2 pressure (PETO2 and PETCO2) were investigated in Peru in 23 newborn and 4 older infants at 3.850 m and in 13 newborns at 800 m. The study was done with the subjects asleep in a thermoneutral environment. The transient increase in ventilation in both high- and low-altitude newborns was followed by a decrease in response to acute hypoxia. During hyperoxia the two groups showed a slight but not clearly significant decrease in ventilation, whereas older high-altitude infants showed a sustained decrease. All subjects showed a prompt and clear response to CO2 inhalation during hyperoxia. We conclude that ventilatory peripheral chemoreflex is not fully developed in newborns regardless of altitude. The weak link in the reflex arc may reside in the afferent component because CO2 response was not impaired. Since hypoxic response became persistent in older infants its blunting in adult high-altitude natives is not a legacy of newborns.  相似文献   

15.
The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine whether a combined thromboxane synthase inhibitor-receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days of hypoxia. Piglets were maintained in room air (control) or 11% O(2) (hypoxic) for 3 days. Some hypoxic piglets received terbogrel (10 mg/kg po bid). Pulmonary arterial pressure, pulmonary wedge pressure, and cardiac output were measured in anesthetized animals. A cannulated artery technique was used to measure responses to acetylcholine. Pulmonary vascular resistance for terbogrel-treated hypoxic piglets was almost one-half the value of untreated hypoxic piglets but remained greater than values for control piglets. Dilation to acetylcholine in preconstricted pulmonary arteries was greater for terbogrel-treated hypoxic than for untreated hypoxic piglets, but it was less for pulmonary arteries from both groups of hypoxic piglets than for control piglets. Terbogrel may ameliorate pulmonary artery dysfunction and attenuate the development of chronic hypoxia-induced pulmonary hypertension in newborns.  相似文献   

16.
The present study examined the effects of serum and lipoproteins on the function of cultured adrenal cells from 115-127-day-old ovine fetuses and from newborn lambs. On day 1 of culture, corticosteroid output was similar in medium containing 2% horse serum or in serum-free medium, both for fetal and neonatal cells. However, on day 5, cells cultured in the absence of serum produced smaller amounts of these steroids than cells maintained in medium containing serum; the difference was more marked under ACTH1-24 stimulation. Conversely, cAMP production was never lower in the absence than in the presence of serum. When stimulated by ACTH1-24 on day 2 of culture, fetal or neonatal adrenal cells incubated in the presence of a saturating concentration of ovine LDL produced more corticosteroids than cells incubated in serum-free medium; HDL also enhanced ACTH1-24-induced steroidogenesis, but to a lesser extent. VLDL was effective only with neonatal cells. In fetal and neonatal cells cultured for 6 days in ACTH-free medium, VLDL and LDL increased ACTH-induced steroidogenesis, but HDL did not. On the other hand, when cells were cultured in the presence of ACTH1-24, LDL and HDL were equipotent in supporting ACTH1-24-induced steroid output. Three major lipoprotein fractions were observed in serum of fetal and newborn lambs. The concentration of cholesterol was very low in the VLDL fraction of fetuses, but it was similar to that of newborns in LDL. Conversely, 4 times more cholesterol was present in HDL of newborns than in HDL of fetuses. These results suggest that: (i) after several days of cell culture, cholesterol availability is an important limiting factor for the steroidogenesis of cells maintained under serum-free conditions; (ii) both an "LDL pathway" and an "HDL pathway" are operating in adrenal cells from fetal as well as newborn sheep; (iii) LDL and HDL are important physiological sources of cholesterol to support steroidogenesis by fetal and neonatal adrenal cells.  相似文献   

17.
Ontogeny of the circadian variation of plasma prolactin in sheep   总被引:1,自引:0,他引:1  
The ontogeny of circadian rhythms is unknown. The newborn sheep has a circadian rhythm of temperature; to study the ontogeny of other rhythms, we examined the 24-h variation of plasma prolactin concentration in fetal and newborn sheep. To this effect, we measured plasma prolactin concentration in chronically catheterized fetuses (n = 7) and in newborn lambs raised under short day nycthemeral (12 light:12 dark, n = 13) or constant light conditions (n = 5). Indwelling catheters were implanted into the jugular vein and carotid artery of late gestation fetuses (0.9 gestation) and newborns (5-29 days old). Experiments were performed 4 or more days after surgery. Lambs were kept in a canvas sling and were fed cow's milk either by mouth or through a nasogastric catheter at established time intervals. Haematocrit, pH, and blood gases were measured before and after the experiments in all cases and remained within normal values. Lights were on and room temperature was maintained constant during the whole experiment. Samples were obtained every 1-2 h for 24 h in fetuses and newborn lambs under nycthemeral conditions and every hour for 48 h in newborn lambs kept under constant light. Plasma prolactin was measured by radioimmunoassay. The presence of a 24 h rhythm was determined by Cosinor analysis. Fetuses, aged 129 +/- 6 days (SD) n = 7, showed a variation in plasma prolactin concentration with a period of 24 h that fits the equation: plasma prolactin (ng ml-1) = 97.0 + 15.4 cos 15 (t-23.0), P = 0.035.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The present study, performed in nonsedated, conscious lambs, consisted of two parts. In the first part, we 1) examined for the first time whether a respiratory response to pulmonary C-fiber stimulation could be elicited in nonsedated newborns and 2) determined whether this response could be abolished by capsaicin pretreatment. Then, by using capsaicin-desensitized lambs, we studied whether pulmonary C fibers were involved in the sustained, active expiratory upper airway closure previously observed during pulmonary edema. Airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activities were recorded. In the first set of experiments, a 5-10 microg/kg capsaicin bolus intravenous injection in seven intact lambs consistently led to a typical pulmonary chemoreflex, showing that C fibers are functionally mature in newborn lambs. In the second series of experiments, eight lambs pretreated with 25-50 mg/kg subcutaneous capsaicin did not exhibit any respiratory response to 10-50 microg/kg intravenous capsaicin injection, implicating C fibers in the response. Finally, in the above capsaicin-desensitized lambs, we observed that halothane-induced high-permeability pulmonary edema did not cause the typical response of sustained expiratory upper airway closure seen in the intact lamb. We conclude that functionally mature C fibers are present and responsible for a pulmonary chemoreflex in response to capsaicin intravenous injection in nonsedated lambs. Capsaicin pretreatment abolishes this reflex. Furthermore, the sustained expiratory upper airway closure observed during halothane-induced pulmonary edema in intact nonsedated lambs appears to be related to a reflex involving stimulation of pulmonary C fibers.  相似文献   

19.
We have examined breathing patterns and respiratory mechanics in anesthetized tracheostomized newborn piglets and adult pigs and the changes determined by cervical bilateral vagotomy. Piglets had a respiratory system compliance and resistance, on a per kilogram basis, respectively, higher and smaller than the adults. After vagotomy neither variable changed in the newborn, but resistance dropped in the adult. This may suggest that efferent vagal control of bronchomotor tone is more pronounced in the adult. Respiratory system time constant was longer in newborns both before and after vagotomy. The distortion of the chest wall, examined as the ratio between the volume inhaled spontaneously and the passive volume for the same abdominal motion, was more marked in newborns, reflecting their higher chest wall compliance. The work per minute, computed from the pressure and volume changes, was larger in piglets. After vagotomy the external work per minute was not different; however, the larger tidal volumes were accompanied by a larger chest distortion. This may indicate that vagal control of the breathing pattern, by limiting the depth of inspiration and hence the amount of chest distortion, has implications on the energetics of breathing.  相似文献   

20.
In a previous study (Kendrick, JE and Matson, G 1979, Amer J Physiol 327:H662-H667) we demonstrated that the vascular responses in dogs to electrical stimulation of aortic nerve (AN) pressor and carotid sinus nerve (CSN) depressor afferents did not sum algebraically. We suggest this results from a reflex interaction which occurs in the central nervous system. The present study extends earlier studies by recording sympathetic vasomotor in chloralose-anesthetized dogs. Stimulation of the CSN reduced sympathetic activity by 51 +/- 20 (SD)%. AN stimulation (2 Hz) caused a 17 +/- 12% increase in sympathetic activity. Combined stimulation of the ipsilateral CSN and AN caused 0 +/- 28% change rather than a 34% decrease expected by an additive interaction. The interaction recorded in this study from the sympathetic outflow is therefore consistent with the previously reported vascular responses (cited above) and implicates central nervous site(s) of action. A conditioning stimulus train to CSN inhibited sympathetic discharges to AN test stimuli. This inhibition was prevented by pairing an AN stimulus with the CSN stimulus train. The AN pressor reflexes act in part by increasing sympathetic activity and in part by suppressing the baroreflexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号