首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch. Plants repressed in both isoforms accumulated similar amounts of starch to those lacking StDPE2. In addition, they contained a range of malto-oligosaccharides from maltose to maltoheptaose. Plants repressed in both isoforms had chlorotic leaves and did not grow as well as either the controls or lines where only one of the isoforms was repressed. Examination of photosynthetic parameters suggested that this was most likely due to a decrease in carbon assimilation. The subcellular localisation of StDPE2 was re-addressed in parallel with DPE2 from Arabidopsis thaliana by transient expression of yellow fluorescent protein fusions in tobacco. No translocation to the chloroplasts was observed for any of the fusion proteins, supporting a cytosolic role of the StDPE2 enzyme in leaf starch metabolism, as has been observed for Arabidopsis DPE2. It is concluded that StDPE1 and StDPE2 have individual essential roles in starch metabolism in potato and consequently repression of these disables regulation of leaf malto-oligosaccharides, starch content and photosynthetic activity and thereby plant growth possibly by a negative feedback mechanism.  相似文献   

2.
The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The “gate” is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms.  相似文献   

3.
Maltose is exported from the Arabidopsis chloroplast as the main product of starch degradation at night. To investigate its fate in the cytosol, we characterised plants with mutations in a gene encoding a putative glucanotransferase (disproportionating enzyme; DPE2), a protein similar to the maltase Q (MalQ) gene product involved in maltose metabolism in bacteria. Use of a DPE2 antiserum revealed that the DPE2 protein is cytosolic. Four independent mutant lines lacked this protein and displayed a decreased capacity for both starch synthesis and starch degradation in leaves. They contained exceptionally high levels of maltose, and elevated levels of glucose, fructose and other malto-oligosaccharides. Sucrose levels were lower than those in wild-type plants, especially at the start of the dark period. A glucosyltransferase activity, capable of transferring one of the glucosyl units of maltose to glycogen or amylopectin and releasing the other, was identified in leaves of wild-type plants. Its activity was sufficient to account for the rate of starch degradation. This activity was absent from dpe2 mutant plants. Based on these results, we suggest that DPE2 is an essential component of the pathway from starch to sucrose and cellular metabolism in leaves at night. Its role is probably to metabolise maltose exported from the chloroplast. We propose a pathway for the conversion of starch to sucrose in an Arabidopsis leaf.  相似文献   

4.
《Process Biochemistry》2014,49(1):84-89
4-α-Glucanotransferase or disproportionating enzyme (D-enzyme, DPE) catalyzes the α-1.4 glycosyl transfer between oligosaccharides. Type I D-enzyme (DPE1) can transfer maltosyl unit from one 1.4-α-d-glucan to an acceptor mono- or oligo-saccharide, which reflects the physiological role of DPE1 in plant starch metabolism. In this study, the genes encoding DPE1 from Arabidopsis thaliana (AtDPE1) and Manihot esculenta Crantz cultivar KU50 (MeDPE1) were cloned and expressed in Escherichia coli and purified to homogeneity. MeDPE1 encoded 585 amino acid residues, including a 56 residue signal peptide, while AtDPE1 encoded 576 amino acid residues with a 45 residue signal peptide. The molecular mass of both mature enzymes, estimated from deduced amino acid sequence, were the same at 59.4 kDa, with a pI of 5.13. The predicted structures of both enzymes showed the conserved 250's loop and three catalytic amino acid residues, characteristics of disproportionating enzymes in the GH77 glycoside hydrolase family. Biochemical characterization showed that both purified recombinant enzymes were homodimers in solution, with similar optimum pH and temperature for disproportionating activity at pH 6–8 and 37 °C. Using potato amylose as a substrate, AtDPE1 can produce cycloamyloses in the range 16–50 glucose residues, while products from the action of MeDPE1 on the same substrate were in a wider range of 16 to DP > 60. These recombinant enzymes are useful tools for elucidation of their functional roles in starch metabolism and for applications in the starch industry.  相似文献   

5.
Glucose and maltose esters were synthesised in organic media by employing a lipase (E.C. 3.1.1.3) from Candida antarctica. In a second reaction step, a transglycosylation catalysed by a cyclodextrin glycosyltransferase (E.C. 2.4.1.19) from either Paenibacillus sp. F8 or Bacillus sp. strain no. 169 (DSM 2518) extended the degree of polymerisation (DP) of the carbohydrate moieties of the carbohydrate esters. The donor substrates used were either a cyclodextrin, a maltooligosaccharide or starch. The highest rate of low DP maltooligosaccharide ester formation was obtained when starch was used as glycosyl donor and caproyl maltose as glycosyl acceptor. The structures of two of the products were identified by 1H and 13C NMR and MALDI-TOF MS as capronate monoesters of maltotriose and maltotetraose, with the ester bond at C-6 of the second glucose unit from the reducing end.  相似文献   

6.
Transitory starch of leaves is broken down hydrolytically, making maltose the predominant form of carbon exported from chloroplasts at night. Maltose metabolism in the cytoplasm of Escherichia coli requires amylomaltase (MalQ) and maltodextrin phosphorylase (MalP). Possible orthologs of MalQ and MalP in the cytosol of Arabidopsis (Arabidopsis thaliana) were proposed as disproportionating enzyme (DPE2, At2g40840) and alpha-glucan phosphorylase (AtPHS2, At3g46970). In this article, we measured the activities of recombinant DPE2 and AtPHS2 proteins with various substrates; we show that maltose and a highly branched, soluble heteroglycan (SHG) are excellent substrates for DPE2 and propose that a SHG is the in vivo substrate for DPE2 and AtPHS2. In E. coli, MalQ and MalP preferentially use smaller maltodextrins (G(3)-G(7)) and we suggest that MalQ and DPE2 have similar, but nonidentical, roles in maltose metabolism. To study this, we complemented a MalQ(-) E. coli strain with DPE2 and found that the rescue was not complete. To investigate the role of AtPHS2 in maltose metabolism, we characterized a T-DNA insertion line of the AtPHS2 gene. The nighttime maltose level increased 4 times in the Atphs2-1 mutant. The comparison of maltose metabolism in Arabidopsis with that in E. coli and the comparison of the maltose level in plants lacking DPE2 or AtPHS2 indicate that an alternative route to metabolize the glucan residues in SHG exists. Other plant species also contain SHG, DPE2, and alpha-glucan phosphorylase, so this pathway for maltose metabolism may be widespread among plants.  相似文献   

7.
Surfactant protein D (SP-D) is an innate immune effector that contributes to antimicrobial host defense and immune regulation. Interactions of SP-D with microorganisms and organic antigens involve binding of glycoconjugates to the C-type lectin carbohydrate recognition domain (CRD). A trimeric fusion protein encoding the human neck+CRD bound to the aromatic glycoside p-nitrophenyl-alpha-D-maltoside with nearly a log-fold higher affinity than maltose, the prototypical competitor. Maltotriose, which has the same linkage pattern as the maltoside, bound with intermediate affinity. Site-directed substitution of leucine for phenylalanine 335 (Phe-335) decreased affinities for the maltoside and maltotriose without significantly altering the affinity for maltose or glucose, and substitution of tyrosine or tryptophan for leucine restored preferential binding to maltotriose and the maltoside. A mutant with alanine at this position failed to bind to mannan or maltose-substituted solid supports. Crystallographic analysis of the human neck+CRD complexed with maltotriose or p-nitrophenyl-maltoside showed stacking of the terminal glucose or nitrophenyl ring with the aromatic ring of Phe-335. Our studies indicate that Phe-335, which is evolutionarily conserved in all known SP-Ds, plays important, if not critical, roles in SP-D function.  相似文献   

8.
A transglucosylase of Streptococcus bovis   总被引:1,自引:0,他引:1       下载免费PDF全文
1. A transglucosylase has been separated from the α-amylase of Streptococcus bovis by chromatography of the cell extract on DEAE-cellulose. 2. The transglucosylase can synthesize higher maltodextrins from maltotriose, but maltose, isomaltose and panose do not function as donors. 3. Iodine-staining polysaccharide may be synthesized from maltotriose provided that glucose is removed. Synthesis from maltohexaose results in dextrins of sufficient chain length to stain with iodine, but again maltodextrins of longer chain length are formed when glucose is removed from the system. 4. The transglucosylase degrades amylose in the presence of a suitable acceptor, transferring one or more glucosyl residues from the non-reducing end of the donor to the non-reducing end of the acceptor. With [14C]glucose as acceptor the maltodextrins produced were labelled in the reducing glucose unit only. 5. The acceptor activities of 25 sugars have been compared with that of glucose. Maltose has 50%, methyl α-glucoside has 15%, isomaltose and panose each has 8% and sucrose has 6% of the accepting efficiency of glucose. Mannose and sorbose also had detectable activity. With the exception of maltose all these sugars produced a different series of dextrins from that obtained with glucose. 6. It was concluded that S. bovis transglucosylase transfers α-(1→4)-glucosidic linkages in the same manner as D-enzyme, but some differences in specificity distinguish the two enzymes. Unlike D-enzyme, S. bovis transglucosylase can transfer glucosyl units, producing appreciable amounts of maltose both during synthesis from maltotriose and during transfer from amylose to glucose. 7. No evidence was found that the transglucosylase was extracellular. The enzyme is cell-bound, and is released by treatment of the cells with lysozyme and by suspension of the spheroplasts in dilute buffer. 8. The transglucosylase may be responsible for the storage of intracellular iodophilic polysaccharide that occurs when the cells are grown in the presence of suitable carbohydrate sources.  相似文献   

9.
10.
11.
Xylanase Xyn10B from Clostridium thermocellum is a modular enzyme that contains two family 22 carbohydrate binding modules N- (CBM22-1) and C- (CBM22-2) terminal of the family 10 glycoside hydrolase catalytic domain (GH10). In a previous study, we showed that removal of CBM22-1 reduces the resistance to thermoinactivation of the enzyme suggesting that this module is a thermostabilizing domain. Here, we show that it is the module border on the N-terminal side of GH10 that confers resistance to thermoinactivation and to proteolysis. Therefore, CBM22-1 does not function as a thermostabilizing domain and the role for this apparently non-functional CBM remains elusive.  相似文献   

12.
Environmental and economic factors predicate the need for efficient processing of renewable sources of fuels and chemicals. To fulfill this need, microbial biocatalysts must be developed to efficiently process the hemicellulose fraction of lignocellulosic biomass for fermentation of pentoses. The predominance of methylglucuronoxylan (MeGAXn), a beta-1,4 xylan in which 10% to 20% of the xylose residues are substituted with alpha-1,2-4-O-methylglucuronate residues, in hemicellulose fractions of hardwood and crop residues has made this a target for processing and fermentation. A Paenibacillus sp. (strain JDR-2) has been isolated and characterized for its ability to efficiently utilize MeGAXn. A modular xylanase (XynA1) of glycosyl hydrolase family 10 (GH 10) was identified through DNA sequence analysis that consists of a triplicate family 22 carbohydrate binding module followed by a GH 10 catalytic domain followed by a single family 9 carbohydrate binding module and concluding with C-terminal triplicate surface layer homology (SLH) domains. Immunodetection of the catalytic domain of XynA1 (XynA1 CD) indicates that the enzyme is associated with the cell wall fraction, supporting an anchoring role for the SLH modules. With MeGAXn as substrate, XynA1 CD generated xylobiose and aldotetrauronate (MeGAX3) as predominant products. The inability to detect depolymerization products in medium during exponential growth of Paenibacillus sp. strain JDR-2 on MeGAXn, as well as decreased growth rate and yield with XynA1 CD-generated xylooligosaccharides and aldouronates as substrates, indicates that XynA1 catalyzes a depolymerization process coupled to product assimilation. This depolymerization/assimilation system may be utilized for development of biocatalysts to efficiently convert MeGAXn to alternative fuels and biobased products.  相似文献   

13.
14.
Hydrolysis of small substrates (maltose, maltotriose and o-nitrophenylmaltoside) catalysed by porcine pancreatic alpha-amylase was studied from a kinetic viewpoint over a wide range of substrate concentrations. Non-linear double-reciprocal plots are obtained at high maltose, maltotriose and o-nitrophenylmaltoside concentrations indicating typical substrate inhibition. These results are consistent with the successive binding of two molecules of substrate per enzyme molecule with dissociation constants Ks1 and Ks2. The Hill plot, log [v/(V-v)] versus log [S], is clearly biphasic and allows the dissociation constants of the ES1 and ES2 complexes to be calculated. Maltose and maltotriose are inhibitors of the amylase-catalysed amylose and o-nitrophenylmaltoside hydrolysis. The inhibition is of the competitive type. The (apparent) inhibition constant Kiapp varies with the inhibitor concentration. These results are also consistent with the successive binding of at least two molecules of maltose or maltotriose per amylase molecule with the dissociation constants Ki1 and Ki2. These inhibition studies show that small substrates and large polymeric ones are hydrolysed at the same catalytic site(s). The values of the dissociation constants Ks1 and Ki1 of the maltose-amylase complexes are identical. According to the five-subsite energy profile previously determined, at low concentration, maltose (as substrate and as inhibitor) binds to the same two sites (4,5) or (3,4), maltotriose (as substrate and as inhibitor) and o-nitrophenyl-maltoside (as substrate) bind to the same three subsites (3,4,5). The dissociation constants Ks2 and Ki2 determined at high substrate and inhibitor concentration are consistent with the binding of the second ligand molecule at a single subsite. The binding mode of the second molecule of maltose (substrate) and o-nitrophenylmaltoside remains uncertain, very likely because of the inaccuracy due to simplifications in the calculations of the subsite binding energies. No binding site(s) outside the catalytic one has been taken into account in this model.  相似文献   

15.
We have characterized a maltodextrin glucosidase, previously described as a maltose-inducible, cytoplasmic enzyme that cleaves p-nitrophenyl-alpha-maltoside in Escherichia coli. The gene encoding the enzyme activity, referred to as malZ, is located at 9.3 min on the chromosomal map. We cloned the gene in a high copy number vector and purified the enzyme. It is a monomer, with an apparent molecular weight of 65,000. The enzyme degrades maltodextrins, ranging from maltotriose to maltoheptaose, to shorter oligosaccharides, the final hydrolysis products being maltose and glucose. We measured the kinetic parameters, Km and Vmax, for the hydrolysis to glucose of the five different substrates. The binding of the substrate is enhanced by increasing the number of glucosyl residues in the maltodextrin. In contrast, the maximum rate of hydrolysis (Vmax) is fastest for maltotriose. To study the mode of action of the enzyme, we quantitatively measured the amount of free glucose liberated from the different maltodextrin substrates after a long incubation. More glucose is liberated from the long dextrins, as compared to the shorter ones, showing that the primary hydrolysis product was glucose, not maltose. Furthermore, [14C]maltotriose, specifically labeled at the reducing end, was hydrolyzed to [14C]glucose and unlabeled maltose. These data demonstrate that the malZ gene product is a maltodextrin glucosidase, liberating glucose from the reducing end of malto-oligosaccharides. The nucleotide sequence of malZ and the deduced amino acid sequence showed that malZ encodes a protein with a molecular weight of 68,960. Homology to glucosidases, alpha-amylases, and pullulanases were observed. Conserved regions thought to represent active sites in dextrin hydrolases were found in the MalZ protein.  相似文献   

16.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the alpha-glucoside transporters described so far.  相似文献   

17.
Fructan 1-exohydrolase, an enzyme involved in fructan degradation, belongs to the glycosyl hydrolase family 32. The structure of isoenzyme 1-FEH IIa from Cichorium intybus is described at a resolution of 2.35 A. The structure consists of an N-terminal fivefold beta-propeller domain connected to two C-terminal beta-sheets. The putative active site is located entirely in the beta-propeller domain and is formed by amino acids which are highly conserved within glycosyl hydrolase family 32. The fructan-binding site is thought to be in the cleft formed between the two domains. The 1-FEH IIa structure is compared with the structures of two homologous but functionally different enzymes: a levansucrase from Bacillus subtilis (glycosyl hydrolase family 68) and an invertase from Thermotoga maritima (glycosyl hydrolase family 32).  相似文献   

18.
A newly isolated bacterium, identified as Bacillus subtilis 65, was found to produce raw-starch-digesting alpha-amylase. The electrophoretically homogeneous preparation of enzyme (molecular weight, 68,000) digested and solubilized raw corn starch to glucose and maltose with small amounts of maltooligosaccharides ranging from maltotriose to maltoheptaose. This enzyme was different from other amylases and could digest raw potato starch almost as fast as it could corn starch, but it showed no adsorbability onto any kind of raw starch at any pH. The mixed preparation with Endomycopsis glucoamylase synergistically digested raw potato starch to glucose at 30 degrees C. The raw-potato-starch-digesting alpha-amylase showed strong digestibility to small substrates, which hydrolyzed maltotriose to maltose and glucose, and hydrolyzed p-nitrophenyl maltoside to p-nitrophenol and maltose, which is different from the capability of bacterial liquefying alpha-amylase.  相似文献   

19.
Kinetic results on the glucomylase-catalysed hydrolysis of maltose and maltotriose, and glucose polymerization into maltose and isomaltose up to 450 g/L total sugar concentration are presented. Whereas the enzyme has a faster hydrolytic and synthetic activity on alpha-(1-->4) than on alpha-(1-->6) linkages, at equilibrium, on the contrary, the isomaltose level which represents 15% (w/w) of the total sugar concentration at the highest investigated concentrations is much higher than the corresponding maltose level. Under a wide range of initial conditions, experimental results are adequately described by a new kinetic model with simple first- and second-order, or Michaelian-type, rate expressions for the reversible hydrolysis of maltotriose, maltose, and isomaltose. The model also accounts for the inhibition of hydrolysis by glucose, but does not consider the concentration of water which, under the present conditions, was not found kinetically limiting.  相似文献   

20.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the α-glucoside transporters described so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号